Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Iraqi Journal of Vet...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Iraqi Journal of Veterinary Sciences
Article . 2021 . Peer-reviewed
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Iraqi Journal of Veterinary Sciences
Article
License: CC BY
Data sources: UnpayWall
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluation of the thermal effect of LTE 2600 MHz (4G) electromagnetic field (EMF) exposure: Thermographic study on rats

Authors: Ali S. Al-Chalabi; Rana Asim; Hasliza Rahim; Mohamed F. Abdul Malek;

Evaluation of the thermal effect of LTE 2600 MHz (4G) electromagnetic field (EMF) exposure: Thermographic study on rats

Abstract

Exposure to LTE 2600 MHz microwaves is increasing very fast as new technologies and become accessible worldwide, and the smartphones being the main source of these waves. The aim of this study is to assess the thermal effect of 4G signals on rats. Forty adult Albino rats were used throughout the study, assigned as control and exposed groups, equally. Rats were kept in Plexiglas cages with intermittent exposure to LTE mobile-phone like signals at an average of 2h/day for up to 30 continuous days with SAR value of 0.982 W/kg. Infrared images were snapped immediately after the end of the exposure time, then one hour, two hours, and four hours later at a rate one collection/week during the study. IR images were analyzed by FLIR Tools software. The results exhibited variation in reflected skin temperatures in the exposed group compared to control images. Furthermore, the analysis of collected data revealed significant variations over the course of the study compared to the first week. The rise in skin temperature observed in response to exposure in the first week, which decreased gradually increased exposure and this drop in reflected skin temperature was significantly related to amount of exposure. The study concludes that the LTE 2600 MHz exposure under controlled laboratory conditions has a thermal effect on the rats.

Subjects by Vocabulary

Microsoft Academic Graph classification: Emf exposure Electromagnetic field Materials science Optics business.industry Thermal effect business

Library of Congress Subject Headings: lcsh:Veterinary medicine lcsh:SF600-1100

Keywords

rats, lte 2600 mhz (4g) signals, ir images, thermographic analysis

29 references, page 1 of 3

1. Fritzer G, Göder R, Friege L, Wachter J, Hansen V, Hinze-Selch D. Effects of short- and long-term pulsed radiofrequency electromagnetic fields on night sleep and cognitive functions in healthy subjects. Bioelectro. 2007;28(4):316-25. https://doi.org/10.1002/bem.20301

2. Eltiti S, Denise W, Anna R, Konstantina Z, Riccardo R, Francisco S, Dariush M, Paul Rasor RD. Does short-term exposure to mobile phone base station signals increase symptoms in individuals who report sensitivity to electromagnetic fields?. Environ Health Perspect. 2007;115(11):1603-8. https://doi.org/10.1289/ehp.10286

3. Djeridane Y, Touitou Y, Seze R de. Influence of electromagnetic fields emitted by GSM-900 Cellular telephones on the circadian patterns of gonadal, adrenal and pituitary hormones in men. Radiat Res. 2009;169:337-343. https://doi.org/10.1667/RR0922.1

4. Choi SB, Kwon MK, Chung JW, Park JS, Chung K, Kim DW. Effects of short-term radiation emitted by WCDMA mobile phones on teenagers and adults. BMC Public Health. 2014;14(1):438. DOI:10.1186/1471-2458-14-438

5. Loughran SP, Benz DC, Schmid MR, Murbach M, Kuster N, Achermann P. No increased sensitivity in brain activity of adolescents exposed to mobile phone-like emissions. Clin Neurophysiol. 2013;124(7):1303-8. https://doi.org/10.1016/j.clinph.2013.01.010 [OpenAIRE]

6. Jayanti IA. A Study on some of the common health effects of cellphones amongst college students. J Community Med Heal Educ. 2013;3(4). DOI:10.4172/2161-0711.1000214

7. Sivachenko IB, Medvedev DS, Molodtsova ID, Panteleev SS, Sokolov AY, Lyubashina OA. Effects of millimeter-wave electromagnetic radiation on the experimental model of migraine. Bull Exp Biol Med. 2016;160(4):425-8. DOI:10.1007/s10517-016-3187-7 [OpenAIRE]

8. SCENIHR. Potential health effects of exposure to electromagnetic fields (EMF). 2015.

9. Kwok C, Jr. Cleveland RF, Means DL. Evaluating Compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields supplement c. Fed Commun Comm Off Eng Technol. 1997;65:36. https://doi.org/10.1109/isemc.2004.1349969

10. Vecchia P, Matthes R, Feychting M, Green A. ICNIRP Guidelines for limiting exposure to time varying electric, magnetic and electromagnetic fields (up to 300 GHz). ICNIRP Publication; 1998. 74.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold
moresidebar

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.