search
The following results are related to NEANIAS Atmospheric Research Community. Are you interested to view more results? Visit OpenAIRE - Explore.

  • NEANIAS Atmospheric Research Community
  • Open Access
  • English
  • Mémoires en Sciences de l'Informati...

Relevance
arrow_drop_down
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Misiti, Michel; Misiti, Yves; Poggi, Jean-Michel; Portier, Bruno;

    Mixture of linear regression models is used for the short-term statistical forecasting of the daily mean PM10 concentration. Hourly concentrations of PM10 have been measured in three cities in Haute-Normandie (France): Rouen, Le Havre and Dieppe. The Haute-Normandie region is located at northwest of Paris, near the south side of Manche sea and is heavily industrialized. We consider six monitoring stations reflecting the diversity of situations: urban background, traffic, rural and industrial stations. We have focused our attention on recent data from 2007 to 2011. We forecast the daily mean PM10 concentration by modeling it as a mixture of linear regression models involving meteorological predictors and the average concentration measured on the previous day. The values of observed meteorological variables are used for fitting the models but the corresponding predictions are considered for the test data, leading to realistic evaluations of forecasting performances, which are calculated through a leave-one-out scheme on the four years. We discuss in this paper several methodological issues including estimation schemes, introduction of the deterministic predictions of meteorological models and how to handle the forecasting at various horizons from some hours to one day ahead.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Cameron, Sara; Bélanger, Hélène;

    International audience; As cities are investing in urban (re)development projects, local residents are affected by the changes directly. It is difficult, however, to qualify these experiences. The objective of this paper is to explore the importance of a study that considers the potential impact on residents living in and around a (re)developed cultural district that has a distinct and identifiable atmosphere of spectacle. We propose a phenomenological inquiry to explore the case of a recent urban (re)development project, Montreal's Quartier des spectacles, with regard to the impact of the spectacularization of space on residents' home territories.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Hyper Article en Ligne
    Other literature type . 2012
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Deshmukh, C.; Serça, Dominique; Delon, Claire; Tardif, R.; +8 Authors

    In the present study, we measured independently CH4 ebullition and diffusion in the footprint of an eddy covariance system (EC) measuring CH4 emissions in the Nam Theun 2 Reservoir, a recently impounded (2008) subtropical hydroelectric reservoir located in the Lao People's Democratic Republic (PDR), Southeast Asia. The EC fluxes were very consistent with the sum of the two terms measured independently (diffusive fluxes + ebullition = EC fluxes), indicating that the EC system picked up both diffusive fluxes and ebullition from the reservoir. We showed a diurnal bimodal pattern of CH4 emissions anti-correlated with atmospheric pressure. During daytime, a large atmospheric pressure drop triggers CH4 ebullition (up to 100 mmol m−2 d−1), whereas at night, a more moderate peak of CH4 emissions was recorded. As a consequence, fluxes during daytime were twice as high as during nighttime. Additionally, more than 4800 discrete measurements of CH4 ebullition were performed at a weekly/fortnightly frequency, covering water depths ranging from 0.4 to 16 m and various types of flooded ecosystems. Methane ebullition varies significantly seasonally and depends mostly on water level change during the warm dry season, whereas no relationship was observed during the cold dry season. On average, ebullition was 8.5 ± 10.5 mmol m−2 d−1 and ranged from 0 to 201.7 mmol m−2 d−1. An artificial neural network (ANN) model could explain up to 46% of seasonal variability of ebullition by considering total static pressure (the sum of hydrostatic and atmospheric pressure), variations in the total static pressure, and bottom temperature as controlling factors. This model allowed extrapolation of CH4 ebullition on the reservoir scale and performance of gap filling over four years. Our results clearly showed a very high seasonality: 50% of the yearly CH4 ebullition occurs within four months of the warm dry season. Overall, ebullition contributed 60–80% of total emissions from the surface of the reservoir (disregarding downstream emissions), suggesting that ebullition is a major pathway in young hydroelectric reservoirs in the tropics.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Horizon / Pleins tex...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Horizon / Pleins textes
    Other literature type . 2014
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Biogeosciences
    Article . 2014
    Data sources: DOAJ-Articles
    DOAJ
    Article . 2014
    Data sources: DOAJ
    Hal-Diderot
    Article . 2014
    Data sources: Hal-Diderot
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Adhikary, H.; Allison, K.K.; Amin, N.; Andronov, E.V.; +157 Authors

    This paper presents multiplicity measurements of KS0, Λ, and Λ¯ produced in 120  GeV/c proton-carbon interactions. The measurements were made using data collected at the NA61/SHINE experiment during two different periods. Decays of these neutral hadrons impact the measured π+, π-, p and p¯ multiplicities in the 120  GeV/c proton-carbon reaction, which are crucial inputs for long-baseline neutrino experiment predictions of neutrino beam flux. The double-differential multiplicities presented here will be used to more precisely measure charged-hadron multiplicities in this reaction, and to reweight neutral hadron production in neutrino beam Monte Carlo simulations. This paper presents multiplicity measurements of $K^0_{\textrm{S}}$, $\Lambda$, and $\bar{\Lambda}$ produced in 120 GeV/$c$ proton-carbon interactions. The measurements were made using data collected at the NA61/SHINE experiment during two different periods. Decays of these neutral hadrons impact the measured $\pi^+$, $\pi^-$, $p$ and $\bar{p}$ multiplicities in the 120 GeV/$c$ proton-carbon reaction, which are crucial inputs for long-baseline neutrino experiment predictions of neutrino beam flux. The double-differential multiplicities presented here will be used to more precisely measure charged-hadron multiplicities in this reaction, and to re-weight neutral hadron production in neutrino beam Monte Carlo simulations.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CERN Document Serverarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    CERN Document Server
    Other literature type . 2022
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CERN Document Serverarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      CERN Document Server
      Other literature type . 2022
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Beirle, S.; Platt, U.; Wenig, M.; Wagner, T.;

    International audience; Nitrogen oxides (NO+NO2=NOx) are important trace gases in the troposphere with impact on human health, atmospheric chemistry and climate. Besides natural sources (lightning, soil emissions) and biomass burning, fossil fuel combustion is estimated to be responsible for about 50\% of the total production of NOx. Since human activity in industrialized countries largely follows an artificial seven-day cycle, fossil fuel combustion is expected to be reduced during weekends. This "weekend effect" is well known from local, ground based measurements, but has never been analysed on a global scale before. The Global Ozone Monitoring Experiment (GOME) on board the ESA-satellite ERS-2 allows measurements of NO2 column densities. Applying sophisticated algorithms, vertical column densities (VCD) of tropospheric NO2 can be determined. We demonstrate the statistical analysis of weekly cycles of tropospheric NO2 VCDs for different regions of the world. In the cycles of the industrialized regions and cities in the US, Europe and Japan a clear Sunday minimum of tropospheric NO2 VCD can be seen. Sunday NO2 VCDs are about 25?50% lower than working day levels. Metropolitan areas with other religious and cultural backgrounds (Jerusalem, Mecca) show different weekly patterns corresponding to different days of rest. In China, no weekly pattern can be found. The presence of a weekly cycle in the measured tropospheric NO2 VCD allows the identification of anthropogenic sources. In addition, the fraction of emissions subjected to a weekly cycle (mainly transport, power generation) with respect to a constant background (all kind of natural sources, biomass burning, heavy industry) can be estimated. Furthermore, we estimated the lifetime of tropospheric NO2 by analysing the mean weekly cycle over Germany in detail, obtaining a value of about 12 h.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Atmospheric Chemistr...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Hyper Article en Ligne
    Other literature type . 2003
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Hyper Article en Ligne
    Other literature type . 2003
    DOAJ
    Article . 2003
    Data sources: DOAJ
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Appel, Seraphine;

    International audience; This article explores how atmospheres in Canada are informed by a colonial attitude, logic of replacement, and hegemonic narratives of relationships to place to suggest that the inconsistencies between the politics of apology and the colonial response when the spatial order is challenged generates settler anxiety. This provocation is offered by considering the ongoing reconciliation rhetoric and decolonial resistance. The former illustrates the stage-value of the æsthethics of reconciliation manifest in politically charged sensitive atmospheres and the latter shows how colonial reaction to the deviant or resistant body illuminates the political potency of corporeal space.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oskar Bordeauxarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Oskar Bordeaux
    Conference object . 2020
    Data sources: Oskar Bordeaux
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: B. Stevens; S. Bony; D. Farrell; F. Ament; +196 Authors

    The science guiding the EUREC4A campaign and its measurements is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EUREC4A marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200 km) and larger (500 km) scales, roughly 400 h of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10 000 profiles), lower atmosphere (continuous profiling), and along the air–sea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EUREC4A explored – from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview of EUREC4A's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ HAL Clermont Univers...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Oskar Bordeaux
    Article . 2021
    License: CC BY NC
    Data sources: Oskar Bordeaux
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    DLR publication server
    Other literature type . 2021
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    MPG.PuRe
    Article . 2021
    License: CC BY
    Data sources: MPG.PuRe
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    MPG.PuRe
    Article . 2021
    Data sources: MPG.PuRe
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Lille Open Archive
    Article . 2021
    Data sources: Lille Open Archive
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    MPG.PuRe
    Article . 2021
    Data sources: MPG.PuRe
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    MPG.PuRe
    Article . 2021
    Data sources: MPG.PuRe
    DOAJ
    Article . 2021
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Ayache, Mohamed; Dutay, Jean-Claude; arsouze, thomas; Révillon, Sidonie; +2 Authors

    An extensive compilation of published neodymium (Nd) concentrations and isotopic compositions (Nd IC) was realized in order to establish a new database and a map (using a high-resolution geological map of the area) of the distribution of these parameters for all the Mediterranean margins. Data were extracted from different kinds of samples: river solid discharge deposited on the shelf, sedimentary material collected on the margin or geological material outcropping above or close to a margin. Additional analyses of surface sediments were done in order to improve this data set in key areas (e.g. Sicilian strait). The Mediterranean margin Nd isotopic signatures vary from non-radiogenic values around the Gulf of Lion, (εNd values ∼ −11) to radiogenic values around the Aegean and the Levantine sub-basins up to +6. Using a high-resolution regional oceanic model (1/12° of horizontal-resolution), εNd distribution was simulated for the first time in the Mediterranean Sea. The high resolution of the model provides a unique opportunity to represent a realistic thermohaline circulation in the basin and thus apprehend the processes governing the Nd isotope distribution in the marine environment. Results are consistent with the preceding conclusions on boundary exchange (BE) as an important process in the Nd oceanic cycle. Nevertheless this approach simulates a too-radiogenic value in the Mediterranean Sea; this bias will likely be corrected once the dust and river inputs will be included in the model. This work highlights that a significant interannual variability of εNd distribution in seawater could occur. In particular, important hydrological events such as the Eastern Mediterranean Transient (EMT), associated with deep water formed in the Aegean sub-basin, could induce a shift in εNd at deep/intermediate depths that could be noticeable in the eastern part of the basin. This underlines that the temporal and geographical variations of εNd could represent an interesting insight of Nd as tracer of the Mediterranean Sea circulation, in particular in the context of palaeo-oceanographic applications.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biogeosciencesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Biogeosciences
    Article . 2016
    Data sources: DOAJ-Articles
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Biogeosciences (BG)
    Other literature type . 2018
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    DOAJ
    Article . 2016
    Data sources: DOAJ
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: M. Gauss; I. S. A. Isaksen; D. S. Lee; O. A. Søvde;

    International audience; Within the EU-project TRADEOFF, the impact of NOx (=NO+NO2) emissions from subsonic aviation upon the chemical composition of the atmosphere has been calculated with focus on changes in reactive nitrogen and ozone. We apply a 3-D chemical transport model that includes comprehensive chemistry for both the troposphere and the stratosphere and uses various aircraft emission scenarios developed during TRADEOFF for the year 2000. The environmental effects of enhanced air traffic along polar routes and of possible changes in cruising altitude are investigated, taking into account effects of flight route changes on fuel consumption and emissions. In a reference case including both civil and military aircraft the model predicts aircraft-induced maximum increases of zonal-mean NOy (=total reactive nitrogen) between 156 pptv (August) and 322 pptv (May) in the tropopause region of the Northern Hemisphere. Resulting maximum increases in zonal-mean ozone vary between 3.1 ppbv in September and 7.7 ppbv in June. Enhanced use of polar routes implies substantially larger zonal-mean ozone increases in high Northern latitudes during summer, while the effect is negligible in winter. Lowering the flight altitude leads to smaller ozone increases in the lower stratosphere and upper troposphere, and to larger ozone increases at altitudes below. Regarding total ozone change, the degree of cancellation between these two effects depends on latitude and season, but annually and globally averaged the contribution from higher altitudes dominates, mainly due to washout of NOy in the troposphere, which weakens the tropospheric increase. Raising flight altitudes increases the ozone burden both in the troposphere and the lower stratosphere, primarily due to a more efficient accumulation of pollutants in the stratosphere.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Hyper Article en Ligne
    Other literature type . 2006
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    DOAJ
    Article . 2006
    Data sources: DOAJ
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Suhett Helmer, Gisèle;

    The capture and the storage of CO2 (CSC) on the underground geological formations is a solution for the CO2 undesirable effects reduction. The geological formations being composed by heterogenic material have a crack network. The fracture toughness (KC) is a rock parameter connected with the capacity of a material to resist crack propagation. The propagation of a crack can be due to the changing of the stress or to the rock degradation. The evaluation of the fracture toughness and its evolution due to the chemical effects is then important to the modelling of the crack propagations on the CO2 storage context. One objective of this work is the experimental evaluation of the CO2 degradation on the fracture toughness. For the experimental program a preliminary study was made to the choice of the rock and the test to be performed. In this way, a limestone (Pierre de Lens) was chosen to be studied in an intact and degraded state. The degradation takes place in an autoclave, where the samples are put at CO2-saturated water in reservoir conditions (60 °C and 15 MPa).Several experimental tests are chosen for the evaluation of the fracture toughness in modes I and II. Some examples are the Central crack Brazilian disc (CCBD) for the mode I and the Punch through shear test (PTST) for the mode II. Some tests where performed using an image correlation technique (DIC). This set-up allows the fracture toughness evaluation by the displacement field evolution. The experimental results shows the fracture toughness values obtained by the different configurations are in good agreement. After the DIC technique analysis we can point the fracture toughness in mode II can not be evaluated in a non confined test. For the degradation process, the complementary analysis in the mercury porosimeter shows the rock porosity changing is low (0.4 %). At the SEM, the degradation can be observed by a homogenization of the sample. For the fracture toughness it value passes from 0.62 to 0.58 MPa.m0.5. We also have studied the effect of water performing tests in a saturated environment. The influence is more significant with a reduction on 17 % in the fracture toughness. The CO2 presence in the fluid does not affect this value. Concerning the mode II evaluation by the PTST test, the samples were submitted to different confining pressures (5, 10 and 15 MPa). We can observe a good evaluation of the fracture toughness in mode II (around 3 MPa.m0.5). Nevertheless, the mode II is still present for the pressures 5 and 10 MPa, and it is not inexistent for a 15 MPa pressure. Still in this case the influence of CO2 is low with values passing from 2.96 to 2.77 MPa.m0.5.The influence if the rock degradation by the CO2 presence on the crack propagation were studied by the help of a numerical model ENDO-HETEROGENE, that is present in the Code-Aster® calculation code. This model is base on the initiation and propagation of cracks in a heterogenic environmental where the parameter variability follows the 2 parameters Weibull probabilistic model (m and σ0). We exploited the possibility of the chemical degradation influence on the microstructure heterogeneity that is represented by the parameter m. The model shows that the changing of m influence on the crack number and dimensions by the maximum size of the crack didn't change. Putting this result in context, the Weibull parameters were evaluated for the intact and degraded rock. We observed that m changes from 8.55 to 8.52 and σ0 from 2.8 to 2.2 MPa. The numerical simulations show this variation is not enough to change the crack network that is formed after a load in a geological layer. The general results show that for a limestone reservoir the CO2 injection affect significantly neither the fracture toughness nor the probabilistic parameters. These results correspond to a 10 years period for a zone far from the injection point; Le captage et stockage du CO2 (CSC) dans les formations géologiques profondes est une solution pour réduire les effets indésirables du CO2 atmosphérique. Les formations géologiques étant des milieux hétérogènes, contiennent souvent des réseaux de fissures. La ténacité (KC) est un paramètre de la roche associé à la capacité du matériau à résister la propagation d'une fissure. La propagation d'une fissure peut dériver du changement de l'état de contrainte ou du changement de la ténacité dû à la dégradation de la roche. La connaissance de la ténacité et son évolution due aux effets chimiques est donc importante pour la modélisation de la propagation des fissures dans le contexte de stockage géologique du CO2.Un objectif de ce travail est l'évaluation de la dégradation par le CO2 sur la ténacité d'une roche réservoir. Un calcaire (Pierre de Lens) est choisi pour être étudié dans son état sain et dégradé. La dégradation est réalisée dans un autoclave : les échantillons sont placés dans une solution aqueuse saturée en CO2, sous les conditions de réservoir (60°C et 15 MPa).Plusieurs configurations ont été choisies pour les essais mécaniques en mode I et en mode II. Certains essais ont été réalisés en utilisant une technique de corrélation d'images (DIC). Ce dispositif permet d'évaluer la ténacité à partir de l'évolution des champs de déplacements. Les résultats expérimentaux montrent que les valeurs de ténacité en mode I sont tout à fait concordantes entre les différents types d'essai. La technique de corrélation d'image met en évidence que la ténacité en mode II ne peut pas être évaluée dans les essais de chargement non confiné. Pour la procédure de dégradation, on peut constater par des analyses complémentaires que la porosité de la roche change peu (0,4 %). La ténacité de la roche n'est pas sensiblement affectée passant de 0,62 à 0,58 MPa.m0,5. On a également étudiée l'effet de la présence de l'eau par des essais de fracturation avec des échantillons saturés. Celle-ci a une influence plus significative avec une réduction d'environ 17% de la ténacité relatif aux échantillons secs. En ce qui concerne l'analyse en mode II (PTST), des essais ont été réalisés sous différentes pressions de confinement (5 - 15 MPa). On peut constater que cet essai permet une bonne évaluation en mode II (de l'ordre de 3 MPa.m0,5). Cependant, le mode I est encore présent pour les pressions de 5 et 10 MPa, et n'est pas toujours inexistant pour une pression de 15 MPa. On a montré, là encore, que l'influence de CO2 est faible avec une ténacité en mode II passant de 2,96 à 2,77 MPa.m0,5. L'influence de la dégradation de la roche par le CO2 sur la propagation de fissures a été étudiée à l'aide d'une modélisation numérique en utilisant le modèle ENDO-HETEROGENE, intégré dans le code de calcul Code-Aster®. Ce modèle est basé sur l'amorçage et la propagation des fissures dans un milieu hétérogène dont la variabilité des paramètres du matériau suit le modèle probabiliste de Weibull à 2 paramètres (m et σ0). On a exploré la possibilité que la dégradation chimique influence l'hétérogénéité de la microstructure. La modélisation montre que le paramètre m influence le nombre et la dimension des fissures, cependant, la taille maximale de la fissure ne varie pas avec m. Pour remettre ces résultats expérimentaux en contexte, les paramètres de Weibull sont évalués pour la roche saine et dégradée. On observe que m varie de 8,55 à 8,52 et σ0 de 2,8 et 2,2 MPa. Selon la simulation numérique cette variation n'est pas suffisante pour changer le réseau des fissures créées après un chargement dans une couche géologique. Ces résultats montrent que dans le cas d'un réservoir calcaire l'injection de CO2 n'influe pas significativement ni le paramètre ténacité, ni dans les paramètres probabilistes de la fracturation. Ces résultats correspondent à une période de 10 ans dans une zone du réservoir loin du puits d'injection

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archive institutionn...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
search
The following results are related to NEANIAS Atmospheric Research Community. Are you interested to view more results? Visit OpenAIRE - Explore.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Misiti, Michel; Misiti, Yves; Poggi, Jean-Michel; Portier, Bruno;

    Mixture of linear regression models is used for the short-term statistical forecasting of the daily mean PM10 concentration. Hourly concentrations of PM10 have been measured in three cities in Haute-Normandie (France): Rouen, Le Havre and Dieppe. The Haute-Normandie region is located at northwest of Paris, near the south side of Manche sea and is heavily industrialized. We consider six monitoring stations reflecting the diversity of situations: urban background, traffic, rural and industrial stations. We have focused our attention on recent data from 2007 to 2011. We forecast the daily mean PM10 concentration by modeling it as a mixture of linear regression models involving meteorological predictors and the average concentration measured on the previous day. The values of observed meteorological variables are used for fitting the models but the corresponding predictions are considered for the test data, leading to realistic evaluations of forecasting performances, which are calculated through a leave-one-out scheme on the four years. We discuss in this paper several methodological issues including estimation schemes, introduction of the deterministic predictions of meteorological models and how to handle the forecasting at various horizons from some hours to one day ahead.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Cameron, Sara; Bélanger, Hélène;

    International audience; As cities are investing in urban (re)development projects, local residents are affected by the changes directly. It is difficult, however, to qualify these experiences. The objective of this paper is to explore the importance of a study that considers the potential impact on residents living in and around a (re)developed cultural district that has a distinct and identifiable atmosphere of spectacle. We propose a phenomenological inquiry to explore the case of a recent urban (re)development project, Montreal's Quartier des spectacles, with regard to the impact of the spectacularization of space on residents' home territories.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Hyper Article en Ligne
    Other literature type . 2012
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Deshmukh, C.; Serça, Dominique; Delon, Claire; Tardif, R.; +8 Authors

    In the present study, we measured independently CH4 ebullition and diffusion in the footprint of an eddy covariance system (EC) measuring CH4 emissions in the Nam Theun 2 Reservoir, a recently impounded (2008) subtropical hydroelectric reservoir located in the Lao People's Democratic Republic (PDR), Southeast Asia. The EC fluxes were very consistent with the sum of the two terms measured independently (diffusive fluxes + ebullition = EC fluxes), indicating that the EC system picked up both diffusive fluxes and ebullition from the reservoir. We showed a diurnal bimodal pattern of CH4 emissions anti-correlated with atmospheric pressure. During daytime, a large atmospheric pressure drop triggers CH4 ebullition (up to 100 mmol m−2 d−1), whereas at night, a more moderate peak of CH4 emissions was recorded. As a consequence, fluxes during daytime were twice as high as during nighttime. Additionally, more than 4800 discrete measurements of CH4 ebullition were performed at a weekly/fortnightly frequency, covering water depths ranging from 0.4 to 16 m and various types of flooded ecosystems. Methane ebullition varies significantly seasonally and depends mostly on water level change during the warm dry season, whereas no relationship was observed during the cold dry season. On average, ebullition was 8.5 ± 10.5 mmol m−2 d−1 and ranged from 0 to 201.7 mmol m−2 d−1. An artificial neural network (ANN) model could explain up to 46% of seasonal variability of ebullition by considering total static pressure (the sum of hydrostatic and atmospheric pressure), variations in the total static pressure, and bottom temperature as controlling factors. This model allowed extrapolation of CH4 ebullition on the reservoir scale and performance of gap filling over four years. Our results clearly showed a very high seasonality: 50% of the yearly CH4 ebullition occurs within four months of the warm dry season. Overall, ebullition contributed 60–80% of total emissions from the surface of the reservoir (disregarding downstream emissions), suggesting that ebullition is a major pathway in young hydroelectric reservoirs in the tropics.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Horizon / Pleins tex...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Horizon / Pleins textes
    Other literature type . 2014
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Biogeosciences
    Article . 2014
    Data sources: DOAJ-Articles
    DOAJ
    Article . 2014
    Data sources: DOAJ
    Hal-Diderot
    Article . 2014
    Data sources: Hal-Diderot
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Adhikary, H.; Allison, K.K.; Amin, N.; Andronov, E.V.; +157 Authors

    This paper presents multiplicity measurements of KS0, Λ, and Λ¯ produced in 120  GeV/c proton-carbon interactions. The measurements were made using data collected at the NA61/SHINE experiment during two different periods. Decays of these neutral hadrons impact the measured π+, π-, p and p¯ multiplicities in the 120  GeV/c proton-carbon reaction, which are crucial inputs for long-baseline neutrino experiment predictions of neutrino beam flux. The double-differential multiplicities presented here will be used to more precisely measure charged-hadron multiplicities in this reaction, and to reweight neutral hadron production in neutrino beam Monte Carlo simulations. This paper presents multiplicity measurements of $K^0_{\textrm{S}}$, $\Lambda$, and $\bar{\Lambda}$ produced in 120 GeV/$c$ proton-carbon interactions. The measurements were made using data collected at the NA61/SHINE experiment during two different periods. Decays of these neutral hadrons impact the measured $\pi^+$, $\pi^-$, $p$ and $\bar{p}$ multiplicities in the 120 GeV/$c$ proton-carbon reaction, which are crucial inputs for long-baseline neutrino experiment predictions of neutrino beam flux. The double-differential multiplicities presented here will be used to more precisely measure charged-hadron multiplicities in this reaction, and to re-weight neutral hadron production in neutrino beam Monte Carlo simulations.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CERN Document Serverarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    CERN Document Server
    Other literature type . 2022
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CERN Document Serverarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      CERN Document Server
      Other literature type . 2022
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Beirle, S.; Platt, U.; Wenig, M.; Wagner, T.;

    International audience; Nitrogen oxides (NO+NO2=NOx) are important trace gases in the troposphere with impact on human health, atmospheric chemistry and climate. Besides natural sources (lightning, soil emissions) and biomass burning, fossil fuel combustion is estimated to be responsible for about 50\% of the total production of NOx. Since human activity in industrialized countries largely follows an artificial seven-day cycle, fossil fuel combustion is expected to be reduced during weekends. This "weekend effect" is well known from local, ground based measurements, but has never been analysed on a global scale before. The Global Ozone Monitoring Experiment (GOME) on board the ESA-satellite ERS-2 allows measurements of NO2 column densities. Applying sophisticated algorithms, vertical column densities (VCD) of tropospheric NO2 can be determined. We demonstrate the statistical analysis of weekly cycles of tropospheric NO2 VCDs for different regions of the world. In the cycles of the industrialized regions and cities in the US, Europe and Japan a clear Sunday minimum of tropospheric NO2 VCD can be seen. Sunday NO2 VCDs are about 25?50% lower than working day levels. Metropolitan areas with other religious and cultural backgrounds (Jerusalem, Mecca) show different weekly patterns corresponding to different days of rest. In China, no weekly pattern can be found. The presence of a weekly cycle in the measured tropospheric NO2 VCD allows the identification of anthropogenic sources. In addition, the fraction of emissions subjected to a weekly cycle (mainly transport, power generation) with respect to a constant background (all kind of natural sources, biomass burning, heavy industry) can be estimated. Furthermore, we estimated the lifetime of tropospheric NO2 by analysing the mean weekly cycle over Germany in detail, obtaining a value of about 12 h.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Atmospheric Chemistr...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Hyper Article en Ligne
    Other literature type . 2003
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Hyper Article en Ligne
    Other literature type . 2003
    DOAJ
    Article . 2003
    Data sources: DOAJ
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Appel, Seraphine;

    International audience; This article explores how atmospheres in Canada are informed by a colonial attitude, logic of replacement, and hegemonic narratives of relationships to place to suggest that the inconsistencies between the politics of apology and the colonial response when the spatial order is challenged generates settler anxiety. This provocation is offered by considering the ongoing reconciliation rhetoric and decolonial resistance. The former illustrates the stage-value of the æsthethics of reconciliation manifest in politically charged sensitive atmospheres and the latter shows how colonial reaction to the deviant or resistant body illuminates the political potency of corporeal space.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oskar Bordeauxarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Oskar Bordeaux
    Conference object . 2020
    Data sources: Oskar Bordeaux
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: B. Stevens; S. Bony; D. Farrell; F. Ament; +196 Authors

    The science guiding the EUREC4A campaign and its measurements is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EUREC4A marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200 km) and larger (500 km) scales, roughly 400 h of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10 000 profiles), lower atmosphere (continuous profiling), and along the air–sea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EUREC4A explored – from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview of EUREC4A's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ HAL Clermont Univers...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Oskar Bordeaux
    Article . 2021
    License: CC BY NC
    Data sources: Oskar Bordeaux
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    DLR publication server
    Other literature type . 2021
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    MPG.PuRe
    Article . 2021
    License: CC BY
    Data sources: MPG.PuRe
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    MPG.PuRe
    Article . 2021
    Data sources: MPG.PuRe
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Lille Open Archive
    Article . 2021
    Data sources: Lille Open Archive
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    MPG.PuRe
    Article . 2021
    Data sources: MPG.PuRe
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    MPG.PuRe
    Article . 2021
    Data sources: MPG.PuRe
    DOAJ
    Article . 2021
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Ayache, Mohamed; Dutay, Jean-Claude; arsouze, thomas; Révillon, Sidonie; +2 Authors

    An extensive compilation of published neodymium (Nd) concentrations and isotopic compositions (Nd IC) was realized in order to establish a new database and a map (using a high-resolution geological map of the area) of the distribution of these parameters for all the Mediterranean margins. Data were extracted from different kinds of samples: river solid discharge deposited on the shelf, sedimentary material collected on the margin or geological material outcropping above or close to a margin. Additional analyses of surface sediments were done in order to improve this data set in key areas (e.g. Sicilian strait). The Mediterranean margin Nd isotopic signatures vary from non-radiogenic values around the Gulf of Lion, (εNd values ∼ −11) to radiogenic values around the Aegean and the Levantine sub-basins up to +6. Using a high-resolution regional oceanic model (1/12° of horizontal-resolution), εNd distribution was simulated for the first time in the Mediterranean Sea. The high resolution of the model provides a unique opportunity to represent a realistic thermohaline circulation in the basin and thus apprehend the processes governing the Nd isotope distribution in the marine environment. Results are consistent with the preceding conclusions on boundary exchange (BE) as an important process in the Nd oceanic cycle. Nevertheless this approach simulates a too-radiogenic value in the Mediterranean Sea; this bias will likely be corrected once the dust and river inputs will be included in the model. This work highlights that a significant interannual variability of εNd distribution in seawater could occur. In particular, important hydrological events such as the Eastern Mediterranean Transient (EMT), associated with deep water formed in the Aegean sub-basin, could induce a shift in εNd at deep/intermediate depths that could be noticeable in the eastern part of the basin. This underlines that the temporal and geographical variations of εNd could represent an interesting insight of Nd as tracer of the Mediterranean Sea circulation, in particular in the context of palaeo-oceanographic applications.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biogeosciencesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Biogeosciences
    Article . 2016
    Data sources: DOAJ-Articles
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Biogeosciences (BG)
    Other literature type . 2018
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    DOAJ
    Article . 2016
    Data sources: DOAJ
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: M. Gauss; I. S. A. Isaksen; D. S. Lee; O. A. Søvde;

    International audience; Within the EU-project TRADEOFF, the impact of NOx (=NO+NO2) emissions from subsonic aviation upon the chemical composition of the atmosphere has been calculated with focus on changes in reactive nitrogen and ozone. We apply a 3-D chemical transport model that includes comprehensive chemistry for both the troposphere and the stratosphere and uses various aircraft emission scenarios developed during TRADEOFF for the year 2000. The environmental effects of enhanced air traffic along polar routes and of possible changes in cruising altitude are investigated, taking into account effects of flight route changes on fuel consumption and emissions. In a reference case including both civil and military aircraft the model predicts aircraft-induced maximum increases of zonal-mean NOy (=total reactive nitrogen) between 156 pptv (August) and 322 pptv (May) in the tropopause region of the Northern Hemisphere. Resulting maximum increases in zonal-mean ozone vary between 3.1 ppbv in September and 7.7 ppbv in June. Enhanced use of polar routes implies substantially larger zonal-mean ozone increases in high Northern latitudes during summer, while the effect is negligible in winter. Lowering the flight altitude leads to smaller ozone increases in the lower stratosphere and upper troposphere, and to larger ozone increases at altitudes below. Regarding total ozone change, the degree of cancellation between these two effects depends on latitude and season, but annually and globally averaged the contribution from higher altitudes dominates, mainly due to washout of NOy in the troposphere, which weakens the tropospheric increase. Raising flight altitudes increases the ozone burden both in the troposphere and the lower stratosphere, primarily due to a more efficient accumulation of pollutants in the stratosphere.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Hyper Article en Ligne
    Other literature type . 2006
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    DOAJ
    Article . 2006
    Data sources: DOAJ
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Suhett Helmer, Gisèle;

    The capture and the storage of CO2 (CSC) on the underground geological formations is a solution for the CO2 undesirable effects reduction. The geological formations being composed by heterogenic material have a crack network. The fracture toughness (KC) is a rock parameter connected with the capacity of a material to resist crack propagation. The propagation of a crack can be due to the changing of the stress or to the rock degradation. The evaluation of the fracture toughness and its evolution due to the chemical effects is then important to the modelling of the crack propagations on the CO2 storage context. One objective of this work is the experimental evaluation of the CO2 degradation on the fracture toughness. For the experimental program a preliminary study was made to the choice of the rock and the test to be performed. In this way, a limestone (Pierre de Lens) was chosen to be studied in an intact and degraded state. The degradation takes place in an autoclave, where the samples are put at CO2-saturated water in reservoir conditions (60 °C and 15 MPa).Several experimental tests are chosen for the evaluation of the fracture toughness in modes I and II. Some examples are the Central crack Brazilian disc (CCBD) for the mode I and the Punch through shear test (PTST) for the mode II. Some tests where performed using an image correlation technique (DIC). This set-up allows the fracture toughness evaluation by the displacement field evolution. The experimental results shows the fracture toughness values obtained by the different configurations are in good agreement. After the DIC technique analysis we can point the fracture toughness in mode II can not be evaluated in a non confined test. For the degradation process, the complementary analysis in the mercury porosimeter shows the rock porosity changing is low (0.4 %). At the SEM, the degradation can be observed by a homogenization of the sample. For the fracture toughness it value passes from 0.62 to 0.58 MPa.m0.5. We also have studied the effect of water performing tests in a saturated environment. The influence is more significant with a reduction on 17 % in the fracture toughness. The CO2 presence in the fluid does not affect this value. Concerning the mode II evaluation by the PTST test, the samples were submitted to different confining pressures (5, 10 and 15 MPa). We can observe a good evaluation of the fracture toughness in mode II (around 3 MPa.m0.5). Nevertheless, the mode II is still present for the pressures 5 and 10 MPa, and it is not inexistent for a 15 MPa pressure. Still in this case the influence of CO2 is low with values passing from 2.96 to 2.77 MPa.m0.5.The influence if the rock degradation by the CO2 presence on the crack propagation were studied by the help of a numerical model ENDO-HETEROGENE, that is present in the Code-Aster® calculation code. This model is base on the initiation and propagation of cracks in a heterogenic environmental where the parameter variability follows the 2 parameters Weibull probabilistic model (m and σ0). We exploited the possibility of the chemical degradation influence on the microstructure heterogeneity that is represented by the parameter m. The model shows that the changing of m influence on the crack number and dimensions by the maximum size of the crack didn't change. Putting this result in context, the Weibull parameters were evaluated for the intact and degraded rock. We observed that m changes from 8.55 to 8.52 and σ0 from 2.8 to 2.2 MPa. The numerical simulations show this variation is not enough to change the crack network that is formed after a load in a geological layer. The general results show that for a limestone reservoir the CO2 injection affect significantly neither the fracture toughness nor the probabilistic parameters. These results correspond to a 10 years period for a zone far from the injection point; Le captage et stockage du CO2 (CSC) dans les formations géologiques profondes est une solution pour réduire les effets indésirables du CO2 atmosphérique. Les formations géologiques étant des milieux hétérogènes, contiennent souvent des réseaux de fissures. La ténacité (KC) est un paramètre de la roche associé à la capacité du matériau à résister la propagation d'une fissure. La propagation d'une fissure peut dériver du changement de l'état de contrainte ou du changement de la ténacité dû à la dégradation de la roche. La connaissance de la ténacité et son évolution due aux effets chimiques est donc importante pour la modélisation de la propagation des fissures dans le contexte de stockage géologique du CO2.Un objectif de ce travail est l'évaluation de la dégradation par le CO2 sur la ténacité d'une roche réservoir. Un calcaire (Pierre de Lens) est choisi pour être étudié dans son état sain et dégradé. La dégradation est réalisée dans un autoclave : les échantillons sont placés dans une solution aqueuse saturée en CO2, sous les conditions de réservoir (60°C et 15 MPa).Plusieurs configurations ont été choisies pour les essais mécaniques en mode I et en mode II. Certains essais ont été réalisés en utilisant une technique de corrélation d'images (DIC). Ce dispositif permet d'évaluer la ténacité à partir de l'évolution des champs de déplacements. Les résultats expérimentaux montrent que les valeurs de ténacité en mode I sont tout à fait concordantes entre les différents types d'essai. La technique de corrélation d'image met en évidence que la ténacité en mode II ne peut pas être évaluée dans les essais de chargement non confiné. Pour la procédure de dégradation, on peut constater par des analyses complémentaires que la porosité de la roche change peu (0,4 %). La ténacité de la roche n'est pas sensiblement affectée passant de 0,62 à 0,58 MPa.m0,5. On a également étudiée l'effet de la présence de l'eau par des essais de fracturation avec des échantillons saturés. Celle-ci a une influence plus significative avec une réduction d'environ 17% de la ténacité relatif aux échantillons secs. En ce qui concerne l'analyse en mode II (PTST), des essais ont été réalisés sous différentes pressions de confinement (5 - 15 MPa). On peut constater que cet essai permet une bonne évaluation en mode II (de l'ordre de 3 MPa.m0,5). Cependant, le mode I est encore présent pour les pressions de 5 et 10 MPa, et n'est pas toujours inexistant pour une pression de 15 MPa. On a montré, là encore, que l'influence de CO2 est faible avec une ténacité en mode II passant de 2,96 à 2,77 MPa.m0,5. L'influence de la dégradation de la roche par le CO2 sur la propagation de fissures a été étudiée à l'aide d'une modélisation numérique en utilisant le modèle ENDO-HETEROGENE, intégré dans le code de calcul Code-Aster®. Ce modèle est basé sur l'amorçage et la propagation des fissures dans un milieu hétérogène dont la variabilité des paramètres du matériau suit le modèle probabiliste de Weibull à 2 paramètres (m et σ0). On a exploré la possibilité que la dégradation chimique influence l'hétérogénéité de la microstructure. La modélisation montre que le paramètre m influence le nombre et la dimension des fissures, cependant, la taille maximale de la fissure ne varie pas avec m. Pour remettre ces résultats expérimentaux en contexte, les paramètres de Weibull sont évalués pour la roche saine et dégradée. On observe que m varie de 8,55 à 8,52 et σ0 de 2,8 et 2,2 MPa. Selon la simulation numérique cette variation n'est pas suffisante pour changer le réseau des fissures créées après un chargement dans une couche géologique. Ces résultats montrent que dans le cas d'un réservoir calcaire l'injection de CO2 n'influe pas significativement ni le paramètre ténacité, ni dans les paramètres probabilistes de la fracturation. Ces résultats correspondent à une période de 10 ans dans une zone du réservoir loin du puits d'injection

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archive institutionn...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert