Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to NEANIAS Atmospheric Research Community. Are you interested to view more results? Visit OpenAIRE - Explore.

  • NEANIAS Atmospheric Research Community
  • Publications
  • Research software
  • European Commission
  • EC|H2020
  • HAL-Inserm

Date (most recent)
arrow_drop_down
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Anne, Boudier; Iana, Markevych; Bénédicte, Jacquemin; Michael J, Abramson; +9 Authors

    International audience; BACKGROUND: Associations of long-term exposure to air pollution and greenspace with health-related quality of life (HRQOL) are poorly studied and few studies have accounted for asthma-rhinitis status. OBJECTIVE: To assess the associations of air pollution and greenspace with HRQOL and whether asthma and/or rhinitis modify these associations. METHODS: The study was based on the participants in the second (2000-2002, n = 6542) and third (2011-2013, n = 3686) waves of the European Community Respiratory Health Survey (ECRHS) including 19 centres. The mean follow-up time was 11.3 years. HRQOL was assessed by the SF-36 Physical and Mental Component Summary scores (PCS and MCS). NO(2), PM(2.5) and PM(10) annual concentrations were estimated at the residential address from existing land-use regression models. Greenspace around the residential address was estimated by the (i) mean of the Normalized Difference Vegetation Index (NDVI) and by the (ii) presence of green spaces within a 300 m buffer. Associations of each exposure variable with PCS and MCS were assessed by mixed linear regression models, accounting for the multicentre design and repeated data, and adjusting for potential confounders. Analyses were stratified by asthma-rhinitis status. RESULTS: The mean (SD) age of the ECRHS-II and III participants was 43 (7.1) and 54 (7.2) years, respectively, and 48 % were men. Higher NO(2), PM(2.5) and PM(10) concentrations were associated with lower MCS (regression coefficients [95%CI] for one unit increase in the inter-quartile range of exposures were -0.69 [-1.23; -0.15], -1.79 [-2.88; -0.70], -1.80 [-2.98; -0.62] respectively). Higher NDVI and presence of forests were associated with higher MCS. No consistent associations were observed for PCS. Similar association patterns were observed regardless of asthma-rhinitis status. CONCLUSION: European adults who resided at places with higher air pollution and lower greenspace were more likely to have lower mental component of HRQOL. Asthma or rhinitis status did not modify these associations.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Jagiellonian Univers...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    6
    citations6
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Zhuyi Lu; Patrice Coll; Bernard Maitre; Ralph Epaud; +1 Authors

    International audience; COPD is a progressive and debilitating disease often diagnosed after 50 years of age, but more recent evidence suggests that its onset could originate very early on in life. In this context, exposure to air pollution appears to be a potential contributor. Although the potential role of air pollution as an early determinant of COPD is emerging, knowledge gaps still remain, including an accurate qualification of air pollutants (number of pollutants quantified and exact composition) or the “one exposure–one disease” concept, which might limit the current understanding. To fill these gaps, improvements in the field are needed, such as the use of atmosphere simulation chambers able to realistically reproduce the complexity of air pollution, consideration of the exposome, as well as improving exchanges between paediatricians and adult lung specialists to take advantage of reciprocal expertise. This review should lead to a better understanding of the current knowledge on air pollution as an early determinant of COPD, as well as identify the existing knowledge gaps and opportunities to fill them. Hopefully, this will lead to better prevention strategies to scale down the development of COPD in future generations.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Respiratory...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    DOAJ
    Article . 2022
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    6
    citations6
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Eva Guilloteau; Patrice Coll; Zhuyi Lu; Madjid Djouina; +12 Authors

    Abstract Background Emerging data indicate that prenatal exposure to air pollution may lead to higher susceptibility to several non-communicable diseases. Limited research has been conducted due to difficulties in modelling realistic air pollution exposure. In this study, pregnant mice were exposed from gestational day 10–17 to an atmosphere representative of a 2017 pollution event in Beijing, China. Intestinal homeostasis and microbiota were assessed in both male and female offspring during the suckling-to-weaning transition. Results Sex-specific differences were observed in progeny of gestationally-exposed mice. In utero exposed males exhibited decreased villus and crypt length, vacuolation abnormalities, and lower levels of tight junction protein ZO-1 in ileum. They showed an upregulation of absorptive cell markers and a downregulation of neonatal markers in colon. Cecum of in utero exposed male mice also presented a deeply unbalanced inflammatory pattern. By contrast, in utero exposed female mice displayed less severe intestinal alterations, but included dysregulated expression of Lgr5 in colon, Tjp1 in cecum, and Epcam, Car2 and Sis in ileum. Moreover, exposed female mice showed dysbiosis characterized by a decreased weighted UniFrac β-diversity index, a higher abundance of Bacteroidales and Coriobacteriales orders, and a reduced Firmicutes/Bacteroidetes ratio. Conclusion Prenatal realistic modelling of an urban air pollution event induced sex-specific precocious alterations of structural and immune intestinal development in mice.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Particle and Fibre T...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Particle and Fibre Toxicology
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Lille Open Archive
    Article . 2022
    Data sources: Lille Open Archive
    DOAJ
    Article . 2022
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Particle and Fibre T...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Particle and Fibre Toxicology
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Lille Open Archive
      Article . 2022
      Data sources: Lille Open Archive
      DOAJ
      Article . 2022
      Data sources: DOAJ
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Marion Blayac; Patrice Coll; Valérie Urbach; Pascale Fanen; +4 Authors

    Cystic fibrosis (CF) is a lethal and widespread autosomal recessive disorder affecting over 80,000 people worldwide. It is caused by mutations of the CFTR gene, which encodes an epithelial anion channel. CF is characterized by a great phenotypic variability which is currently not fully understood. Although CF is genetically determined, the course of the disease might also depend on multiple other factors. Air pollution, whose effects on health and contribution to respiratory diseases are well established, is one environmental factor suspected to modulate the disease severity and influence the lung phenotype of CF patients. This is of particular interest as pulmonary failure is the primary cause of death in CF. The present review discusses current knowledge on the impact of air pollution on CF pathogenesis and aims to explore the underlying cellular and biological mechanisms involved in these effects.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Physiol...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    DOAJ
    Article . 2022
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    3
    citations3
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Dennis Schulze; Michael Kohlstedt; Judith Becker; Edern Cahoreau; +6 Authors

    Abstract Background Cyanobacteria receive huge interest as green catalysts. While exploiting energy from sunlight, they co-utilize sugar and CO2. This photomixotrophic mode enables fast growth and high cell densities, opening perspectives for sustainable biomanufacturing. The model cyanobacterium Synechocystis sp. PCC 6803 possesses a complex architecture of glycolytic routes for glucose breakdown that are intertwined with the CO2-fixing Calvin-Benson-Bassham (CBB) cycle. To date, the contribution of these pathways to photomixotrophic metabolism has remained unclear. Results Here, we developed a comprehensive approach for 13C metabolic flux analysis of Synechocystis sp. PCC 6803 during steady state photomixotrophic growth. Under these conditions, the Entner-Doudoroff (ED) and phosphoketolase (PK) pathways were found inactive but the microbe used the phosphoglucoisomerase (PGI) (63.1%) and the oxidative pentose phosphate pathway (OPP) shunts (9.3%) to fuel the CBB cycle. Mutants that lacked the ED pathway, the PK pathway, or phosphofructokinases were not affected in growth under metabolic steady-state. An ED pathway-deficient mutant (Δeda) exhibited an enhanced CBB cycle flux and increased glycogen formation, while the OPP shunt was almost inactive (1.3%). Under fluctuating light, ∆eda showed a growth defect, different to wild type and the other deletion strains. Conclusions The developed approach, based on parallel 13C tracer studies with GC–MS analysis of amino acids, sugars, and sugar derivatives, optionally adding NMR data from amino acids, is valuable to study fluxes in photomixotrophic microbes to detail. In photomixotrophic cells, PGI and OPP form glycolytic shunts that merge at switch points and result in synergistic fueling of the CBB cycle for maximized CO2 fixation. However, redirected fluxes in an ED shunt-deficient mutant and the impossibility to delete this shunt in a GAPDH2 knockout mutant, indicate that either minor fluxes (below the resolution limit of 13C flux analysis) might exist that could provide catalytic amounts of regulatory intermediates or alternatively, that EDA possesses additional so far unknown functions. These ideas require further experiments.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Microbial Cell Facto...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://doi.org/10.22028/d291-...
    Article . 2022
    License: CC BY
    Data sources: Datacite
    DOAJ
    Article . 2022
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    10
    citations10
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Basile Chaix; Sanjeev Bista; Limin Wang; Tarik Benmarhnia; +2 Authors

    IntroductionMobiliSense explores effects of air pollution and noise related to personal transport habits on respiratory and cardiovascular health. Its objectives are to quantify the contribution of personal transport/mobility to air pollution and noise exposures of individuals; to compare exposures in different transport modes; and to investigate whether total and transport-related personal exposures are associated with short-term and longer-term changes in respiratory and cardiovascular health.Methods and analysisMobiliSense uses sensors of location, behaviour, environmental nuisances and health in 290 census-sampled participants followed-up after 1/2 years with an identical sensor-based strategy. It addresses knowledge gaps by: (1) assessing transport behaviour over 6 days with GPS receivers and GPS-based mobility surveys; (2) considering personal exposures to both air pollution and noise and improving their characterisation (inhaled doses, noise frequency components, etc); (3) measuring respiratory and cardiovascular outcomes (smartphone-assessed respiratory symptoms, lung function with spirometry, resting blood pressure, ambulatory brachial/central blood pressure, arterial stiffness and heart rate variability) and (4) investigating short-term and longer-term (over 1–2 years) effects of transport.Ethics and disseminationThe sampling and data collection protocol was approved by the National Council for Statistical Information, the French Data Protection Authority and the Ethical Committee of Inserm. Our final aim is to determine, for communicating with policy-makers, how scenarios of changes in personal transport behaviour affect individual exposure and health.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ BMJ Openarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    BMJ Open
    Other literature type . Article . 2022 . Peer-reviewed
    License: CC BY NC
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    BMJ Open
    Article . 2022
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ BMJ Openarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      BMJ Open
      Other literature type . Article . 2022 . Peer-reviewed
      License: CC BY NC
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      BMJ Open
      Article . 2022
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Binter, Anne-Claire; Bernard, Jonathan Y.; Mon-Williams, Mark; Andiarena, Ainara; +15 Authors

    Acknowledgements We are grateful to all the participating children, parents, practi-tioners and researchers in the four countries who took part in this study. This work was supported by funding from the European Community's Seventh Framework Programme [FP7/2007-206 n 308333; the HELIX project] . This INMA cohort was funded by grants from Instituto de Salud Carlos III (Red INMA G03/176; CB06/02/0041; PI041436; PI081151 incl. FEDER funds, FIS PI06/0867, FIS-PI09/00090, FIS and FIS-PI18/01142 incl. FEDER funds, FIS-FEDER: PI03/1615, PI04/1509, PI04/1112, PI04/1931, PI05/1079, PI05/1052, PI06/1213, PI07/0314, PI09/02647, PI11/01007, PI11/02591, PI11/02038, PI13/1944, PI13/2032, PI14/00891, PI14/01687, PI16/1288, PI16/00118 and PI17/00663; FIS-FSE: 17/00260; Miguel Servet-FEDER CP11/00178, CP15/00025, CPII16/00051, and CPII18/00018) , from UE (FP7-ENV-2011 cod 282957, HEALTH.2010.2.4.5-1, and H2020 n 824989) , Generalitat de Catalunya-CIRIT 1999SGR 00241, Fundacio La marato de TV3 (090430) , Generalitat Valenciana: FISABIO (UGP 15-230, UGP-15-244, and UGP-15-249) , Alicia Koplowitz Foundation 2017, CIBERESP, Department of Health of the Basque Government (2013111089, 2009111069, 2013111089, 2015111065 and 2018111086) , Provincial Government of Gipuzkoa (DFG06/002, DFG08/001, DFG15/221 and DFG 89/17) and annual agreements with the municipalities of the study area (Zumarraga, Urretxu , Legazpi, Azkoitia y Azpeitia y Beasain) . We acknowledge support from the Spanish Ministry of Science and Inno-vation and the State Research Agency through the "Centro de Excelencia Severo Ochoa 2019-2023" Program (CEX2018-000806-S) , and support from the Generalitat de Catalunya through the CERCA Program. The work was also supported by MICINN [MTM2015-68140-R] and Centro Nacional de Genotipado-CEGEN-PRB2-ISCIII (Spain) . The Rhea project was financially supported by European projects, and the Greek Ministry of Health (Program of Prevention of obesity and neurodevelopmental disorders in preschool children, in Heraklion district, Crete, Greece: 2011-2014; "Rhea Plus": Primary Prevention Program of Environmental Risk Factors for Reproductive Health, and Child Health: 2012-15) . This paper presents independent research funded by the National Institute for Health Research (NIHR) under its Collaboration for Applied Health Research and Care (CLAHRC) for Yorkshire and Humber (UK) . The EDEN study was supported by Foundation for medical research (FRM) , National Agency for Research (ANR) , National Institute for Research inPublic health (IRESP: TGIR cohorte sante 2008 program) , French Min-istry of Health (DGS) , French Ministry of Research, INSERM Bone and Joint Diseases National Research (PRO-A) , and Human Nutrition Na-tional Research Programs, Paris-Sud University, Nestle, French National Institute for Population Health Surveillance (InVS) , French National Institute for Health Education (INPES) , the European Union FP7 pro-grams (ESCAPE, ENRIECO, Medall projects) , Diabetes National Research Program (through a collaboration with the French Association of Diabetic Patients (AFD) ) , French Agency for Environmental Health Safety and French National Agency for Food Security (now ANSES) , Mutuelle Generale de l'Education Nationale a complementary health insurance (MGEN) , French-speaking association for the study of diabetes and metabolism (ALFEDIAM) . Core support for Born in Bradford is also provided by the Wellcome Trust (WT101597MA, UK) . Born in Bradford (BiB) is only possible because of the enthusiasm and commitment of the children and parents in BiB. We are grateful to all the participants, health professionals, schools and researchers who have made BiB happen. BiB receives funding from the ESRC/MRC, the Wellcome Trust (WT101597MA) and the National Institute for Health Research York-shire and Humber ARC (reference: NIHR20016) . M. Mon-Williams was supported by a Fellowship from the Alan Turing Institute. Additional funding from the National Institute of Environmental Health Science supported Dr Chatzi (R01ES030691, R01ES029944, R01ES030364, R21ES029681, and P30ES007048) . The views expressed are those of the authors, and not necessarily those of the NHS or the NIHR. None of the funders were involved in designing the study, collecting the data, analyzing or interpreting the data, deciding to submit the article for publication, or the writing of the report. Data sharing statement The HELIX data warehouse has been established as an accessible resource for collaborative research involving researchers external to the project. Access to HELIX data is based on approval by the HELIX Project Executive Committee and by the individual cohorts. Further details on the content of the data warehouse (data catalogue) and procedures for external access are described on the project website (http:// www.proj-ecthelix.eu/index.php/es/data-inventory) . [EN]Background: The urban environment may influence neurodevelopment from conception onwards, but there is no evaluation of the impact of multiple groups of exposures simultaneously. We investigated the association between early-life urban environment and cognitive and motor function in children. Methods: We used data from 5403 mother-child pairs from four population-based birth-cohorts (UK, France, Spain, and Greece). We estimated thirteen urban home exposures during pregnancy and childhood, including: built environment, natural spaces, and air pollution. Verbal, non-verbal, gross motor, and fine motor functions were assessed using validated tests at five years old. We ran adjusted multi-exposure models using the Deletion-Substitution-Addition algorithm. Results: Higher greenness exposure within 300 m during pregnancy was associated with higher verbal abilities (1.5 points (95% confidence interval 0.4, 2.7) per 0.20 unit increase in greenness). Higher connectivity density within 100 m and land use diversity during pregnancy were related to lower verbal abilities. Childhood exposure to PM2.5 mediated 74% of the association between greenness during childhood and verbal abilities. Higher exposure to PM2.5 during pregnancy was related to lower fine motor function (-1.2 points (-2.1, -0.4) per 3.2 mu g/m3 increase in PM2.5). No associations were found with non-verbal abilities and gross motor function. Discussion: This study suggests that built environment, greenness, and air pollution may impact child cognitive and motor function at five years old. This study adds evidence that well-designed urban planning may benefit children's cognitive and motor development.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ACU Research Bankarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Environment International
    Article . 2022
    Data sources: NARCIS
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Environment International
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Sygma; Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    UPF Digital Repository
    Article . 2022
    License: CC BY
    DOAJ
    Article . 2022
    Data sources: DOAJ
    Hal-Diderot
    Article . 2022
    Data sources: Hal-Diderot
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    24
    citations24
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Sanjeev, Bista; Giovanna, Fancello; Basile, Chaix;

    International audience; Documented relationships between black carbon (BC) exposure and blood pressure (BP) have been inconsistent. Very few studies measured both BC exposure and ambulatory BP across the multiple daily environments visited in the general population, and none adjusted for personal noise exposure, a major confounder. Our study addresses these gaps by considering 245 adults living in the Grand Paris region. Personal exposure to BC was monitored for 2 days using AE51 microaethalometers. Ambulatory BP was measured every 30 min after waking up using Arteriograph 24 monitors (n = 6772). Mixed effect models with a random intercept at the individual level and time-autocorrelation structure adjusted for personal noise exposure were used to evaluate the associations between BC exposure (averaged from 5 min to 1 h before each BP measurement) and BP. To increase the robustness of findings, we eliminated confounding by unmeasured time-invariant personal variables, by modelling the associations with fixed-effect models. All models were adjusted for potential confounders and short-term time trends. Results from mixed models show that a 1-μg/m3 increase in 5-minute averaged BC exposure was associated with an increase of 0.57 mmHg in ambulatory systolic blood pressure (SBP) (95 % CI: 0.30, 0.83) and with an increase of 0.36 mmHg in diastolic blood pressure (DBP) (95 % CI: 0.14, 0.58). The slope of the exposure-response relationship gradually decreased for both SBP and DBP with the increase in the averaging period of BC exposure from 5 min to 1 h preceding each BP measurement. Findings from the fixed-effect models were consistent with these results. There was no effect modification by noise in the associations, across all exposure windows. We found evidence of a relationship between BC exposure and acute increase in ambulatory SBP and DBP after adjustment for personal noise exposure, with potential implications for the development of adverse cardiovascular outcomes.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of The Total Environment
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    ISEE Conference Abstracts
    Article . 2022 . Peer-reviewed
    Data sources: Crossref
    SSRN Electronic Journal
    Article . 2022 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    6
    citations6
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Sulaiman Khan; David Newport; Stéphane Le Calvé;

    Deep-UV absorption spectrometry for detection of toxic airborne gases, for instance, Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX) has drawn considerable attention owing to its high sensitivity and reliability. However, the development of a deep-UV absorbance detector having good sensitivity, portability, and a low-volume gas cell with applicability for a micro Gas Chromatography (μGC) is challenging. Herein we present a novel, self-referenced, and portable deep-UV absorbance detector with a microliter (275 μL) gas cell having minimal dead volume. It has excellent compatibility with μGC for detection of individual BTEX components in a mixed sample at a sub-ppm level. The design consists of the latest, portable, and cost-effective optical and electronic components, i.e., deep-UV LED, hollow-core waveguide, and photodiodes. The detector directly measures the absorbance values in volts using an integrated circuit with a log-ratio amplifier. The prototype was tested with direct injection of toluene-N2 (1.5 ppm to 50 ppm) and good linearity (R2 = 0.99) with a limit of detection of 196 ppb was obtained. The absorbance detector with μGC setup was tested with a BTEX mixture in N2 at different GC column temperatures. All the BTEX species were sequentially separated and detected with an individual peak for a concentration range of 2.5 ppm to 10 ppm.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Chemosensorsarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Chemosensors
    Other literature type . Article . 2021 . Peer-reviewed
    License: CC BY
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Chemosensors
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Chemosensors
    Article . 2021
    Data sources: DOAJ-Articles
    DOAJ
    Article . 2021
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Chemosensorsarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Chemosensors
      Other literature type . Article . 2021 . Peer-reviewed
      License: CC BY
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Chemosensors
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Chemosensors
      Article . 2021
      Data sources: DOAJ-Articles
      DOAJ
      Article . 2021
      Data sources: DOAJ
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Charline, Warembourg; Mark, Nieuwenhuijsen; Ferran, Ballester; Montserrat, de Castro; +12 Authors

    Background: The urban environment is characterised by many exposures that may influence hypertension development from early life onwards, but there is no systematic evaluation of their impact on child blood pressure (BP). Methods: Systolic and diastolic blood pressure were measured in 4,279 children aged 4-5 years from a multi-centre European cohort (France, Greece, Spain, and UK). Urban environment exposures were estimated during pregnancy and childhood, including air pollution, built environment, natural spaces, traffic, noise, meteorology, and socioeconomic deprivation index. Single- and multiple-exposure linear regression models and a cluster analysis were carried out. Results: In multiple exposure models, higher child BP, in particular diastolic BP, was observed in association with higher exposure to air pollution, noise and ambient temperature during pregnancy, and with higher exposure to air pollution and higher building density during childhood (e.g., mean change [95% confidence interval] for an interquartile range increase in prenatal NO2 = 0.7 mmHg[0.3;1.2]). Lower BP was observed in association with higher temperature and better street connectivity during childhood (e.g., temperature = -1.1[-1.6;-0.6]). Some of these associations were not robust in the sensitivity analyses. Mother-child pairs were grouped into six urban environment exposure clusters. Compared to the cluster representing the least harmful urban environment, the two clusters representing the most harmful environment (high in air pollution, traffic, noise, and low in green space) were both associated with higher diastolic BP (1.3[0.1;2.6] and 1.5[0.5;2.5]). Conclusion: This first large systematic study suggests that living in a harmful urban environment may impact BP regulation in children. These findings reinforce the importance of designing cities that promote healthy environments to reduce long-term risk of hypertension and other cardiovascular diseases. This work was supported by funding from the European Community’s Seventh Framework Programme [FP7/2007–206 n°308333; the HELIX project], and by the European Union’s Horizon 2020 research and innovation programme [H2020 n°733206; the LifeCycle project]. CW holds a Sara Borrell fellowship from the Instituto de Salud Carlos III [CD18/00132]. INMA data collections were supported by grants from the Instituto de Salud Carlos III, CIBERESP, and the Generalitat de Catalunya- CIRIT (Spain). The Rhea project was financially supported by European projects, and the Greek Ministry of Health (Program of Prevention of obesity and neurodevelopmental disorders in preschool children, in Heraklion district, Crete, Greece: 2011–2014; “Rhea Plus”: Primary Prevention Program of Environmental Risk Factors for Reproductive Health, and Child Health: 2012–15). The work was also supported by MICINN [MTM2015-68140-R] and Centro Nacional de Genotipado- CEGEN- PRB2- ISCIII (Spain). This paper presents independent research funded by the National Institute for Health Research (NIHR) under its Collaboration for Applied Health Research and Care (CLAHRC) for Yorkshire and Humber (UK). Core support for Born in Bradford is also provided by the Wellcome Trust (WT101597MA, UK). The EDEN study was supported by Foundation for medical research (FRM), National Agency for Research (ANR), National Institute for Research in Public health (IRESP: TGIR cohorte santé 2008 program), French Ministry of Health (DGS), French Ministry of Research, INSERM Bone and Joint Diseases National Research (PRO-A), and Human Nutrition National Research Programs, Paris-Sud University, Nestlé, French National Institute for Population Health Surveillance (InVS), French National Institute for Health Education (INPES), the European Union FP7 programmes (ESCAPE, ENRIECO, Medall projects), Diabetes National Research Program (through a collaboration with the French Association of Diabetic Patients (AFD)), French Agency for Environmental Health Safety (now ANSES), Mutuelle Générale de l’Education Nationale a complementary health insurance (MGEN), French national agency for food security, French-speaking association for the study of diabetes and metabolism (ALFEDIAM).

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ACU Research Bankarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    UPF Digital Repository
    Article . 2021
    License: CC BY NC ND
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Environment International
    Other literature type . Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    DOAJ
    Article . 2021
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    24
    citations24
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    download22
    downloaddownloads22
    Powered by Usage counts
    more_vert
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to NEANIAS Atmospheric Research Community. Are you interested to view more results? Visit OpenAIRE - Explore.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Anne, Boudier; Iana, Markevych; Bénédicte, Jacquemin; Michael J, Abramson; +9 Authors

    International audience; BACKGROUND: Associations of long-term exposure to air pollution and greenspace with health-related quality of life (HRQOL) are poorly studied and few studies have accounted for asthma-rhinitis status. OBJECTIVE: To assess the associations of air pollution and greenspace with HRQOL and whether asthma and/or rhinitis modify these associations. METHODS: The study was based on the participants in the second (2000-2002, n = 6542) and third (2011-2013, n = 3686) waves of the European Community Respiratory Health Survey (ECRHS) including 19 centres. The mean follow-up time was 11.3 years. HRQOL was assessed by the SF-36 Physical and Mental Component Summary scores (PCS and MCS). NO(2), PM(2.5) and PM(10) annual concentrations were estimated at the residential address from existing land-use regression models. Greenspace around the residential address was estimated by the (i) mean of the Normalized Difference Vegetation Index (NDVI) and by the (ii) presence of green spaces within a 300 m buffer. Associations of each exposure variable with PCS and MCS were assessed by mixed linear regression models, accounting for the multicentre design and repeated data, and adjusting for potential confounders. Analyses were stratified by asthma-rhinitis status. RESULTS: The mean (SD) age of the ECRHS-II and III participants was 43 (7.1) and 54 (7.2) years, respectively, and 48 % were men. Higher NO(2), PM(2.5) and PM(10) concentrations were associated with lower MCS (regression coefficients [95%CI] for one unit increase in the inter-quartile range of exposures were -0.69 [-1.23; -0.15], -1.79 [-2.88; -0.70], -1.80 [-2.98; -0.62] respectively). Higher NDVI and presence of forests were associated with higher MCS. No consistent associations were observed for PCS. Similar association patterns were observed regardless of asthma-rhinitis status. CONCLUSION: European adults who resided at places with higher air pollution and lower greenspace were more likely to have lower mental component of HRQOL. Asthma or rhinitis status did not modify these associations.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Jagiellonian Univers...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    6
    citations6
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Zhuyi Lu; Patrice Coll; Bernard Maitre; Ralph Epaud; +1 Authors

    International audience; COPD is a progressive and debilitating disease often diagnosed after 50 years of age, but more recent evidence suggests that its onset could originate very early on in life. In this context, exposure to air pollution appears to be a potential contributor. Although the potential role of air pollution as an early determinant of COPD is emerging, knowledge gaps still remain, including an accurate qualification of air pollutants (number of pollutants quantified and exact composition) or the “one exposure–one disease” concept, which might limit the current understanding. To fill these gaps, improvements in the field are needed, such as the use of atmosphere simulation chambers able to realistically reproduce the complexity of air pollution, consideration of the exposome, as well as improving exchanges between paediatricians and adult lung specialists to take advantage of reciprocal expertise. This review should lead to a better understanding of the current knowledge on air pollution as an early determinant of COPD, as well as identify the existing knowledge gaps and opportunities to fill them. Hopefully, this will lead to better prevention strategies to scale down the development of COPD in future generations.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Respiratory...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    DOAJ
    Article . 2022
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    6
    citations6
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Eva Guilloteau; Patrice Coll; Zhuyi Lu; Madjid Djouina; +12 Authors

    Abstract Background Emerging data indicate that prenatal exposure to air pollution may lead to higher susceptibility to several non-communicable diseases. Limited research has been conducted due to difficulties in modelling realistic air pollution exposure. In this study, pregnant mice were exposed from gestational day 10–17 to an atmosphere representative of a 2017 pollution event in Beijing, China. Intestinal homeostasis and microbiota were assessed in both male and female offspring during the suckling-to-weaning transition. Results Sex-specific differences were observed in progeny of gestationally-exposed mice. In utero exposed males exhibited decreased villus and crypt length, vacuolation abnormalities, and lower levels of tight junction protein ZO-1 in ileum. They showed an upregulation of absorptive cell markers and a downregulation of neonatal markers in colon. Cecum of in utero exposed male mice also presented a deeply unbalanced inflammatory pattern. By contrast, in utero exposed female mice displayed less severe intestinal alterations, but included dysregulated expression of Lgr5 in colon, Tjp1 in cecum, and Epcam, Car2 and Sis in ileum. Moreover, exposed female mice showed dysbiosis characterized by a decreased weighted UniFrac β-diversity index, a higher abundance of Bacteroidales and Coriobacteriales orders, and a reduced Firmicutes/Bacteroidetes ratio. Conclusion Prenatal realistic modelling of an urban air pollution event induced sex-specific precocious alterations of structural and immune intestinal development in mice.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Particle and Fibre T...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Particle and Fibre Toxicology
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Lille Open Archive
    Article . 2022
    Data sources: Lille Open Archive
    DOAJ
    Article . 2022
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Particle and Fibre T...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Particle and Fibre Toxicology
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Lille Open Archive
      Article . 2022
      Data sources: Lille Open Archive
      DOAJ
      Article . 2022
      Data sources: DOAJ
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Marion Blayac; Patrice Coll; Valérie Urbach; Pascale Fanen; +4 Authors

    Cystic fibrosis (CF) is a lethal and widespread autosomal recessive disorder affecting over 80,000 people worldwide. It is caused by mutations of the CFTR gene, which encodes an epithelial anion channel. CF is characterized by a great phenotypic variability which is currently not fully understood. Although CF is genetically determined, the course of the disease might also depend on multiple other factors. Air pollution, whose effects on health and contribution to respiratory diseases are well established, is one environmental factor suspected to modulate the disease severity and influence the lung phenotype of CF patients. This is of particular interest as pulmonary failure is the primary cause of death in CF. The present review discusses current knowledge on the impact of air pollution on CF pathogenesis and aims to explore the underlying cellular and biological mechanisms involved in these effects.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Physiol...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    DOAJ
    Article . 2022
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    3
    citations3
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Dennis Schulze; Michael Kohlstedt; Judith Becker; Edern Cahoreau; +6 Authors

    Abstract Background Cyanobacteria receive huge interest as green catalysts. While exploiting energy from sunlight, they co-utilize sugar and CO2. This photomixotrophic mode enables fast growth and high cell densities, opening perspectives for sustainable biomanufacturing. The model cyanobacterium Synechocystis sp. PCC 6803 possesses a complex architecture of glycolytic routes for glucose breakdown that are intertwined with the CO2-fixing Calvin-Benson-Bassham (CBB) cycle. To date, the contribution of these pathways to photomixotrophic metabolism has remained unclear. Results Here, we developed a comprehensive approach for 13C metabolic flux analysis of Synechocystis sp. PCC 6803 during steady state photomixotrophic growth. Under these conditions, the Entner-Doudoroff (ED) and phosphoketolase (PK) pathways were found inactive but the microbe used the phosphoglucoisomerase (PGI) (63.1%) and the oxidative pentose phosphate pathway (OPP) shunts (9.3%) to fuel the CBB cycle. Mutants that lacked the ED pathway, the PK pathway, or phosphofructokinases were not affected in growth under metabolic steady-state. An ED pathway-deficient mutant (Δeda) exhibited an enhanced CBB cycle flux and increased glycogen formation, while the OPP shunt was almost inactive (1.3%). Under fluctuating light, ∆eda showed a growth defect, different to wild type and the other deletion strains. Conclusions The developed approach, based on parallel 13C tracer studies with GC–MS analysis of amino acids, sugars, and sugar derivatives, optionally adding NMR data from amino acids, is valuable to study fluxes in photomixotrophic microbes to detail. In photomixotrophic cells, PGI and OPP form glycolytic shunts that merge at switch points and result in synergistic fueling of the CBB cycle for maximized CO2 fixation. However, redirected fluxes in an ED shunt-deficient mutant and the impossibility to delete this shunt in a GAPDH2 knockout mutant, indicate that either minor fluxes (below the resolution limit of 13C flux analysis) might exist that could provide catalytic amounts of regulatory intermediates or alternatively, that EDA possesses additional so far unknown functions. These ideas require further experiments.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Microbial Cell Facto...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://doi.org/10.22028/d291-...
    Article . 2022
    License: CC BY
    Data sources: Datacite
    DOAJ
    Article . 2022
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    10
    citations10
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Basile Chaix; Sanjeev Bista; Limin Wang; Tarik Benmarhnia; +2 Authors

    IntroductionMobiliSense explores effects of air pollution and noise related to personal transport habits on respiratory and cardiovascular health. Its objectives are to quantify the contribution of personal transport/mobility to air pollution and noise exposures of individuals; to compare exposures in different transport modes; and to investigate whether total and transport-related personal exposures are associated with short-term and longer-term changes in respiratory and cardiovascular health.Methods and analysisMobiliSense uses sensors of location, behaviour, environmental nuisances and health in 290 census-sampled participants followed-up after 1/2 years with an identical sensor-based strategy. It addresses knowledge gaps by: (1) assessing transport behaviour over 6 days with GPS receivers and GPS-based mobility surveys; (2) considering personal exposures to both air pollution and noise and improving their characterisation (inhaled doses, noise frequency components, etc); (3) measuring respiratory and cardiovascular outcomes (smartphone-assessed respiratory symptoms, lung function with spirometry, resting blood pressure, ambulatory brachial/central blood pressure, arterial stiffness and heart rate variability) and (4) investigating short-term and longer-term (over 1–2 years) effects of transport.Ethics and disseminationThe sampling and data collection protocol was approved by the National Council for Statistical Information, the French Data Protection Authority and the Ethical Committee of Inserm. Our final aim is to determine, for communicating with policy-makers, how scenarios of changes in personal transport behaviour affect individual exposure and health.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ BMJ Openarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    BMJ Open
    Other literature type . Article . 2022 . Peer-reviewed
    License: CC BY NC
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    BMJ Open
    Article . 2022
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ BMJ Openarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      BMJ Open
      Other literature type . Article . 2022 . Peer-reviewed
      License: CC BY NC
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      BMJ Open
      Article . 2022
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Binter, Anne-Claire; Bernard, Jonathan Y.; Mon-Williams, Mark; Andiarena, Ainara; +15 Authors

    Acknowledgements We are grateful to all the participating children, parents, practi-tioners and researchers in the four countries who took part in this study. This work was supported by funding from the European Community's Seventh Framework Programme [FP7/2007-206 n 308333; the HELIX project] . This INMA cohort was funded by grants from Instituto de Salud Carlos III (Red INMA G03/176; CB06/02/0041; PI041436; PI081151 incl. FEDER funds, FIS PI06/0867, FIS-PI09/00090, FIS and FIS-PI18/01142 incl. FEDER funds, FIS-FEDER: PI03/1615, PI04/1509, PI04/1112, PI04/1931, PI05/1079, PI05/1052, PI06/1213, PI07/0314, PI09/02647, PI11/01007, PI11/02591, PI11/02038, PI13/1944, PI13/2032, PI14/00891, PI14/01687, PI16/1288, PI16/00118 and PI17/00663; FIS-FSE: 17/00260; Miguel Servet-FEDER CP11/00178, CP15/00025, CPII16/00051, and CPII18/00018) , from UE (FP7-ENV-2011 cod 282957, HEALTH.2010.2.4.5-1, and H2020 n 824989) , Generalitat de Catalunya-CIRIT 1999SGR 00241, Fundacio La marato de TV3 (090430) , Generalitat Valenciana: FISABIO (UGP 15-230, UGP-15-244, and UGP-15-249) , Alicia Koplowitz Foundation 2017, CIBERESP, Department of Health of the Basque Government (2013111089, 2009111069, 2013111089, 2015111065 and 2018111086) , Provincial Government of Gipuzkoa (DFG06/002, DFG08/001, DFG15/221 and DFG 89/17) and annual agreements with the municipalities of the study area (Zumarraga, Urretxu , Legazpi, Azkoitia y Azpeitia y Beasain) . We acknowledge support from the Spanish Ministry of Science and Inno-vation and the State Research Agency through the "Centro de Excelencia Severo Ochoa 2019-2023" Program (CEX2018-000806-S) , and support from the Generalitat de Catalunya through the CERCA Program. The work was also supported by MICINN [MTM2015-68140-R] and Centro Nacional de Genotipado-CEGEN-PRB2-ISCIII (Spain) . The Rhea project was financially supported by European projects, and the Greek Ministry of Health (Program of Prevention of obesity and neurodevelopmental disorders in preschool children, in Heraklion district, Crete, Greece: 2011-2014; "Rhea Plus": Primary Prevention Program of Environmental Risk Factors for Reproductive Health, and Child Health: 2012-15) . This paper presents independent research funded by the National Institute for Health Research (NIHR) under its Collaboration for Applied Health Research and Care (CLAHRC) for Yorkshire and Humber (UK) . The EDEN study was supported by Foundation for medical research (FRM) , National Agency for Research (ANR) , National Institute for Research inPublic health (IRESP: TGIR cohorte sante 2008 program) , French Min-istry of Health (DGS) , French Ministry of Research, INSERM Bone and Joint Diseases National Research (PRO-A) , and Human Nutrition Na-tional Research Programs, Paris-Sud University, Nestle, French National Institute for Population Health Surveillance (InVS) , French National Institute for Health Education (INPES) , the European Union FP7 pro-grams (ESCAPE, ENRIECO, Medall projects) , Diabetes National Research Program (through a collaboration with the French Association of Diabetic Patients (AFD) ) , French Agency for Environmental Health Safety and French National Agency for Food Security (now ANSES) , Mutuelle Generale de l'Education Nationale a complementary health insurance (MGEN) , French-speaking association for the study of diabetes and metabolism (ALFEDIAM) . Core support for Born in Bradford is also provided by the Wellcome Trust (WT101597MA, UK) . Born in Bradford (BiB) is only possible because of the enthusiasm and commitment of the children and parents in BiB. We are grateful to all the participants, health professionals, schools and researchers who have made BiB happen. BiB receives funding from the ESRC/MRC, the Wellcome Trust (WT101597MA) and the National Institute for Health Research York-shire and Humber ARC (reference: NIHR20016) . M. Mon-Williams was supported by a Fellowship from the Alan Turing Institute. Additional funding from the National Institute of Environmental Health Science supported Dr Chatzi (R01ES030691, R01ES029944, R01ES030364, R21ES029681, and P30ES007048) . The views expressed are those of the authors, and not necessarily those of the NHS or the NIHR. None of the funders were involved in designing the study, collecting the data, analyzing or interpreting the data, deciding to submit the article for publication, or the writing of the report. Data sharing statement The HELIX data warehouse has been established as an accessible resource for collaborative research involving researchers external to the project. Access to HELIX data is based on approval by the HELIX Project Executive Committee and by the individual cohorts. Further details on the content of the data warehouse (data catalogue) and procedures for external access are described on the project website (http:// www.proj-ecthelix.eu/index.php/es/data-inventory) . [EN]Background: The urban environment may influence neurodevelopment from conception onwards, but there is no evaluation of the impact of multiple groups of exposures simultaneously. We investigated the association between early-life urban environment and cognitive and motor function in children. Methods: We used data from 5403 mother-child pairs from four population-based birth-cohorts (UK, France, Spain, and Greece). We estimated thirteen urban home exposures during pregnancy and childhood, including: built environment, natural spaces, and air pollution. Verbal, non-verbal, gross motor, and fine motor functions were assessed using validated tests at five years old. We ran adjusted multi-exposure models using the Deletion-Substitution-Addition algorithm. Results: Higher greenness exposure within 300 m during pregnancy was associated with higher verbal abilities (1.5 points (95% confidence interval 0.4, 2.7) per 0.20 unit increase in greenness). Higher connectivity density within 100 m and land use diversity during pregnancy were related to lower verbal abilities. Childhood exposure to PM2.5 mediated 74% of the association between greenness during childhood and verbal abilities. Higher exposure to PM2.5 during pregnancy was related to lower fine motor function (-1.2 points (-2.1, -0.4) per 3.2 mu g/m3 increase in PM2.5). No associations were found with non-verbal abilities and gross motor function. Discussion: This study suggests that built environment, greenness, and air pollution may impact child cognitive and motor function at five years old. This study adds evidence that well-designed urban planning may benefit children's cognitive and motor development.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ACU Research Bankarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Environment International
    Article . 2022
    Data sources: NARCIS
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Environment International
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Sygma; Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    UPF Digital Repository
    Article . 2022
    License: CC BY
    DOAJ
    Article . 2022
    Data sources: DOAJ
    Hal-Diderot
    Article . 2022
    Data sources: Hal-Diderot
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    24
    citations24
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Sanjeev, Bista; Giovanna, Fancello; Basile, Chaix;

    International audience; Documented relationships between black carbon (BC) exposure and blood pressure (BP) have been inconsistent. Very few studies measured both BC exposure and ambulatory BP across the multiple daily environments visited in the general population, and none adjusted for personal noise exposure, a major confounder. Our study addresses these gaps by considering 245 adults living in the Grand Paris region. Personal exposure to BC was monitored for 2 days using AE51 microaethalometers. Ambulatory BP was measured every 30 min after waking up using Arteriograph 24 monitors (n = 6772). Mixed effect models with a random intercept at the individual level and time-autocorrelation structure adjusted for personal noise exposure were used to evaluate the associations between BC exposure (averaged from 5 min to 1 h before each BP measurement) and BP. To increase the robustness of findings, we eliminated confounding by unmeasured time-invariant personal variables, by modelling the associations with fixed-effect models. All models were adjusted for potential confounders and short-term time trends. Results from mixed models show that a 1-μg/m3 increase in 5-minute averaged BC exposure was associated with an increase of 0.57 mmHg in ambulatory systolic blood pressure (SBP) (95 % CI: 0.30, 0.83) and with an increase of 0.36 mmHg in diastolic blood pressure (DBP) (95 % CI: 0.14, 0.58). The slope of the exposure-response relationship gradually decreased for both SBP and DBP with the increase in the averaging period of BC exposure from 5 min to 1 h preceding each BP measurement. Findings from the fixed-effect models were consistent with these results. There was no effect modification by noise in the associations, across all exposure windows. We found evidence of a relationship between BC exposure and acute increase in ambulatory SBP and DBP after adjustment for personal noise exposure, with potential implications for the development of adverse cardiovascular outcomes.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of The Total Environment
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    ISEE Conference Abstracts
    Article . 2022 . Peer-reviewed
    Data sources: Crossref
    SSRN Electronic Journal
    Article . 2022 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    6
    citations6
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Sulaiman Khan; David Newport; Stéphane Le Calvé;

    Deep-UV absorption spectrometry for detection of toxic airborne gases, for instance, Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX) has drawn considerable attention owing to its high sensitivity and reliability. However, the development of a deep-UV absorbance detector having good sensitivity, portability, and a low-volume gas cell with applicability for a micro Gas Chromatography (μGC) is challenging. Herein we present a novel, self-referenced, and portable deep-UV absorbance detector with a microliter (275 μL) gas cell having minimal dead volume. It has excellent compatibility with μGC for detection of individual BTEX components in a mixed sample at a sub-ppm level. The design consists of the latest, portable, and cost-effective optical and electronic components, i.e., deep-UV LED, hollow-core waveguide, and photodiodes. The detector directly measures the absorbance values in volts using an integrated circuit with a log-ratio amplifier. The prototype was tested with direct injection of toluene-N2 (1.5 ppm to 50 ppm) and good linearity (R2 = 0.99) with a limit of detection of 196 ppb was obtained. The absorbance detector with μGC setup was tested with a BTEX mixture in N2 at different GC column temperatures. All the BTEX species were sequentially separated and detected with an individual peak for a concentration range of 2.5 ppm to 10 ppm.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Chemosensorsarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Chemosensors
    Other literature type . Article . 2021 . Peer-reviewed
    License: CC BY
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Chemosensors
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Chemosensors
    Article . 2021
    Data sources: DOAJ-Articles
    DOAJ
    Article . 2021
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Chemosensorsarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Chemosensors
      Other literature type . Article . 2021 . Peer-reviewed
      License: CC BY
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Chemosensors
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Chemosensors
      Article . 2021
      Data sources: DOAJ-Articles
      DOAJ
      Article . 2021
      Data sources: DOAJ
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Charline, Warembourg; Mark, Nieuwenhuijsen; Ferran, Ballester; Montserrat, de Castro; +12 Authors

    Background: The urban environment is characterised by many exposures that may influence hypertension development from early life onwards, but there is no systematic evaluation of their impact on child blood pressure (BP). Methods: Systolic and diastolic blood pressure were measured in 4,279 children aged 4-5 years from a multi-centre European cohort (France, Greece, Spain, and UK). Urban environment exposures were estimated during pregnancy and childhood, including air pollution, built environment, natural spaces, traffic, noise, meteorology, and socioeconomic deprivation index. Single- and multiple-exposure linear regression models and a cluster analysis were carried out. Results: In multiple exposure models, higher child BP, in particular diastolic BP, was observed in association with higher exposure to air pollution, noise and ambient temperature during pregnancy, and with higher exposure to air pollution and higher building density during childhood (e.g., mean change [95% confidence interval] for an interquartile range increase in prenatal NO2 = 0.7 mmHg[0.3;1.2]). Lower BP was observed in association with higher temperature and better street connectivity during childhood (e.g., temperature = -1.1[-1.6;-0.6]). Some of these associations were not robust in the sensitivity analyses. Mother-child pairs were grouped into six urban environment exposure clusters. Compared to the cluster representing the least harmful urban environment, the two clusters representing the most harmful environment (high in air pollution, traffic, noise, and low in green space) were both associated with higher diastolic BP (1.3[0.1;2.6] and 1.5[0.5;2.5]). Conclusion: This first large systematic study suggests that living in a harmful urban environment may impact BP regulation in children. These findings reinforce the importance of designing cities that promote healthy environments to reduce long-term risk of hypertension and other cardiovascular diseases. This work was supported by funding from the European Community’s Seventh Framework Programme [FP7/2007–206 n°308333; the HELIX project], and by the European Union’s Horizon 2020 research and innovation programme [H2020 n°733206; the LifeCycle project]. CW holds a Sara Borrell fellowship from the Instituto de Salud Carlos III [CD18/00132]. INMA data collections were supported by grants from the Instituto de Salud Carlos III, CIBERESP, and the Generalitat de Catalunya- CIRIT (Spain). The Rhea project was financially supported by European projects, and the Greek Ministry of Health (Program of Prevention of obesity and neurodevelopmental disorders in preschool children, in Heraklion district, Crete, Greece: 2011–2014; “Rhea Plus”: Primary Prevention Program of Environmental Risk Factors for Reproductive Health, and Child Health: 2012–15). The work was also supported by MICINN [MTM2015-68140-R] and Centro Nacional de Genotipado- CEGEN- PRB2- ISCIII (Spain). This paper presents independent research funded by the National Institute for Health Research (NIHR) under its Collaboration for Applied Health Research and Care (CLAHRC) for Yorkshire and Humber (UK). Core support for Born in Bradford is also provided by the Wellcome Trust (WT101597MA, UK). The EDEN study was supported by Foundation for medical research (FRM), National Agency for Research (ANR), National Institute for Research in Public health (IRESP: TGIR cohorte santé 2008 program), French Ministry of Health (DGS), French Ministry of Research, INSERM Bone and Joint Diseases National Research (PRO-A), and Human Nutrition National Research Programs, Paris-Sud University, Nestlé, French National Institute for Population Health Surveillance (InVS), French National Institute for Health Education (INPES), the European Union FP7 programmes (ESCAPE, ENRIECO, Medall projects), Diabetes National Research Program (through a collaboration with the French Association of Diabetic Patients (AFD)), French Agency for Environmental Health Safety (now ANSES), Mutuelle Générale de l’Education Nationale a complementary health insurance (MGEN), French national agency for food security, French-speaking association for the study of diabetes and metabolism (ALFEDIAM).

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ACU Research Bankarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    UPF Digital Repository
    Article . 2021
    License: CC BY NC ND
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Environment International
    Other literature type . Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    DOAJ
    Article . 2021
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    24
    citations24
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    download22
    downloaddownloads22
    Powered by Usage counts
    more_vert