Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to COVID-19. Are you interested to view more results? Visit OpenAIRE - Explore.

  • COVID-19
  • Publications
  • Research software
  • Doctoral thesis
  • French National Research Agency (AN...
  • FR
  • Mémoires en Sciences de l'Informati...
  • Hyper Article en Ligne

Date (most recent)
arrow_drop_down
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Roquencourt, Camille;

    L'analyse des composés organiques volatils (COVs) dans l'air expiré est une méthode non invasive prometteuse en médecine pour le diagnostic précoce, le phénotypage, le suivi de la maladie et du traitement et le dépistage à grande échelle. La spectrométrie de masse à temps de vol par réaction de transfert de protons (PTR-TOF-MS) présente un intérêt majeur pour l'analyse en temps réel des COVs et la découverte de nouveaux biomarqueurs. Le manque de méthodes et d'outils logiciels pour le traitement des données PTR-TOF-MS provenant de cohortes représente actuellement un verrou pour le développement de ces approches.Nous avons ainsi développé une suite d'algorithmes permettant le traitement des données brutes jusqu’au tableau des intensités des molécules détectées, grâce à la détection des expirations et des pics dans les spectres de masse, la quantification dans la dimension temporelle, l'alignement entre les échantillons et l'imputation des valeurs manquantes. Nous avons notamment mis au point un modèle innovant de déconvolution des pics en 2 dimensions reposant sur une régression du signal par splines pénalisées, ainsi qu'une méthode permettant de sélectionner spécifiquement les COVs dans l'air expiré. L'ensemble du processus est implémenté dans le paquet R/Bioconductor ptairMS, disponible en ligne. Nous avons validé notre approche à la fois sur des données expérimentales (mélange de COVs à des concentrations standardisées) et par simulation. Les résultats montrent que l'identification des COVs provenant de l’air expiré à partir du modèle proposé atteint une sensibilité de 99 `%. Une interface graphique a également été développée pour faciliter l'analyse des données et l'interprétation des résultats par les expérimentateurs (les cliniciens notamment). Nous avons appliqué notre méthodologie à la caractérisation de l'air expiré d'adultes sous ventilation mécanique atteints de l’infection COVID-19. Les analyses de l'air expiré de 40 patients atteints d’un syndrome de détresse respiratoire aiguë (SDRA) ont été effectuées quotidiennement, de l'entrée à la sortie de l'hôpital. Nous avons d'abord réalisé un modèle de classification pour prédire le statut de l'infection, en utilisant l'acquisition disponible la plus proche de l’admission à l'hôpital.Ce modèle permet de prédire le statut de l'infection avec une précision de 93%. Ensuite, nous avons utilisé toutes les données disponibles pour une analyse longitudinale de l'évolution des COVs en fonction de la durée de l'hospitalisation, en utilisant un modèle à effets mixtes. Après sélection de variables, quatre biomarqueurs de l'infection par le COVID-19 ont pu être identifiés. Ces résultats soulignent la valeur des données PTR-TOF-MS et du logiciel ptairMS pour la découverte de biomarqueurs dans l'air expiré. The analysis of Volatile Organic Compounds (VOCs) in exhaled breath is a promising non-invasive approach in medicine for early diagnosis, phenotyping, disease and treatment monitoring and large-scale screening. Proton Transfer Reaction Time-Of-Flight Mass Spectrometry (PTR-TOF-MS) is of major interest for the real time analysis of VOCs and the discovery of new biomarkers in the clinics. However, there is currently a lack of methods and software tools for the processing of PTR-TOF-MS data from cohorts.We therefore developed a suite of algorithms that process raw data from the patient acquisitions, and build the table of feature intensities, through expiration and peak detection, quantification, alignment between samples, and missing value imputation. Notably, we developed an innovative 2D peak deconvolution model based on penalized splines signal regression, and a method to specifically select the VOCs from exhaled breath. The full workflow is implemented in the freely available ptairMS R/Bioconductor package. Our approach was validated both on experimental data (mixture of VOCs at standardized concentrations) and simulations, which showed that the sensitivity for the identification of VOCs from exhaled breath reached 99 %. A graphical interface was also developed to facilitate data analysis and result interpretation by experimenters (e.g., clinicians).We applied our methodology to the characterization of exhaled breath from mechanically ventilated adults with COVID-19 infection. Analysis of exhaled breath from 28 patients with an acute respiratory distress syndrome (ARDS) and COVID-19 infection, and 12 patients with non-COVID-19 ARDS were performed daily from the hospital admission to the discharge. First, classification models were built to predict the status of the infection, using the closest available acquisition to the entry into hospital, and achieved high prediction accuracies (93 %). Then, all the available data acquired during the hospital stay were used for the longitudinal analysis of the VOCs evolution as a function of the hospitalization time by mixed-effects modeling. Following feature ranking and selection, four biomarkers of COVID-19 infection were identified. Altogether, these results highlight the value of the PTR-TOF-MS data and the ptairMS software for biomarker discovery in exhaled breath.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Hyper Article en Ligne
    Other literature type . 2022
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Hyper Article en Ligne
      Other literature type . 2022
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Mayer, Tobias;

    In the latest years, the healthcare domain has seen an increasing interest in the definition of intelligent systems to support clinicians in their everyday tasks and activities. Among others, this includes novel systems for the field of Evidence-based Medicine. The latter relies on the principle of critically appraising medical evidence and combining high quality evidence with the individual clinical experience of the practitioner with respect to the circumstances of a patient to achieve the best possible outcome. Hence, most of the proposed intelligent systems aim either at extracting information concerning the quality of evidence from clinical trials, clinical guidelines, or electronic health records, or assist in the decision making processes, based on reasoning frameworks. The work in this thesis goes beyond the state-of-the-art of currently proposed information extraction systems. It employs Argument Mining methods to extract and classify argumentative components (i.e., evidence and claims of a clinical trial) and their relations (i.e., support, attack). An Argument Mining pipeline is proposed and further enhanced to integrate additional information inspired by prevalent biomedical frameworks for the analysis of clinical trials. These extensions comprise the detection of PICO elements and an outcome analysis module to identify and classify the effects (i.e., improved, increased, decreased, no difference, no occurrence) of an intervention on the outcome of the trial. In this context, a dataset, composed of 660 Randomized Controlled Trial abstracts from the MEDLINE database, was annotated, leading to a labeled dataset with 4198 argument components, 2601 argument relations, and 3351 outcomes on five different diseases (i.e., neoplasm, glaucoma, hepatitis, diabetes, hypertension). Various Machine Learning approaches ranging from feature-based SVMs to recent neural architectures have been experimented with, where deep bidirectional transformers obtain a macro F1-score of .87 for argument component detection and .68 for argument relation prediction, outperforming current state-of-the-art Argument Mining systems. Additionally, a Proof-of-Concept system, called ACTA, was developed to demonstrate the practical use of the developed argument-based approach to analyse clinical trials. This demo system was further integrated in the context of the Covid-on-the-Web project to create rich and actionable Linked Data about the Covid-19.; Ces dernières années, le domaine de la e-santé a vu un intérêt croissant pour la définition de systèmes intelligents ayant le but d’accompagner les cliniciens dans leurs tâches et leurs activités quotidiennes. D’ailleurs, cela inclut de nouveaux systèmes pour le domaine de la médecine basée sur les preuves. Ce dernier repose sur le principe de l’évaluation critique des preuves médicales et de la combinaison de ces preuves de haute qualité avec l’expérience clinique individuelle du praticien par rapport à la situation d’un patient pour obtenir le meilleur résultat possible. La plupart des systèmes intelligents proposés visent soit à extraire des informations sur la qualité des preuves issues des essais cliniques, de directives cliniques ou des dossiers de santé électroniques, soit à aider dans les processus de prise de décision, sur la base de cadres de raisonnement. Le travail de cette thèse va au-delà de l’état de l’art des systèmes d’extraction d’informations actuellement proposés dans ce contexte. Il utilise des méthodes d’analyse d’arguments pour extraire et classifier les composants d’argumentation (c’est-à-dire les preuves et les conclusions d’un essai clinique) et leurs relations (c’est-à-dire le support et l’attaque). Un cadre de fouille d’arguments (Argument Mining) est proposé et amélioré pour intégrer des informations supplémentaires inspirées par les cadres biomédicaux courants pour l’analyse des essais cliniques. Ces extensions comprennent la détection des éléments PICO et un module d’analyse des résultats pour identifier et classer les effets (c’est- à-dire améliorés, augmentés, diminués, pas de différence, pas d’occurrence) d’une intervention sur le résultat de l’essai. Dans ce contexte, un jeu de données, composé de 660 résumés d’essais cliniques dans la base de données MEDLINE, a été annoté, en résultant dans le construction d’un jeu de données étiquetées qui inclut 4198 composants d’argumentation, 2601 relations d’argumentation et 3351 résultats d’intervention sur cinq maladies différentes (néoplasme, glaucome, hépatite, dia- bète, hypertension). Diverses approches d’apprentissage automatique et profond allant des SVM aux architectures récentes basées sur les réseaux de neurones ont été expérimentées, obtenant un F1 macro de 0,87 pour la détection de composants d’argumentation et de 0,68 pour la prédiction des relation d’argumentation, surpassant les résultats obtenus pas les systèmes de detection d’arguments dans l’état de l’art. De plus, une demo d’un système, appelé ACTA, a été développée pour démontrer l’utilisation pratique de l’approche basée sur les arguments développée pour analyser les essais cliniques. Ce système de démonstration a été intégré dans le contexte du projet Covid-on-the-Web pour créer des données liées riches et exploitables sur le Covid-19.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oskar Bordeauxarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Oskar Bordeaux
    Doctoral thesis
    Data sources: Oskar Bordeaux
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to COVID-19. Are you interested to view more results? Visit OpenAIRE - Explore.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Roquencourt, Camille;

    L'analyse des composés organiques volatils (COVs) dans l'air expiré est une méthode non invasive prometteuse en médecine pour le diagnostic précoce, le phénotypage, le suivi de la maladie et du traitement et le dépistage à grande échelle. La spectrométrie de masse à temps de vol par réaction de transfert de protons (PTR-TOF-MS) présente un intérêt majeur pour l'analyse en temps réel des COVs et la découverte de nouveaux biomarqueurs. Le manque de méthodes et d'outils logiciels pour le traitement des données PTR-TOF-MS provenant de cohortes représente actuellement un verrou pour le développement de ces approches.Nous avons ainsi développé une suite d'algorithmes permettant le traitement des données brutes jusqu’au tableau des intensités des molécules détectées, grâce à la détection des expirations et des pics dans les spectres de masse, la quantification dans la dimension temporelle, l'alignement entre les échantillons et l'imputation des valeurs manquantes. Nous avons notamment mis au point un modèle innovant de déconvolution des pics en 2 dimensions reposant sur une régression du signal par splines pénalisées, ainsi qu'une méthode permettant de sélectionner spécifiquement les COVs dans l'air expiré. L'ensemble du processus est implémenté dans le paquet R/Bioconductor ptairMS, disponible en ligne. Nous avons validé notre approche à la fois sur des données expérimentales (mélange de COVs à des concentrations standardisées) et par simulation. Les résultats montrent que l'identification des COVs provenant de l’air expiré à partir du modèle proposé atteint une sensibilité de 99 `%. Une interface graphique a également été développée pour faciliter l'analyse des données et l'interprétation des résultats par les expérimentateurs (les cliniciens notamment). Nous avons appliqué notre méthodologie à la caractérisation de l'air expiré d'adultes sous ventilation mécanique atteints de l’infection COVID-19. Les analyses de l'air expiré de 40 patients atteints d’un syndrome de détresse respiratoire aiguë (SDRA) ont été effectuées quotidiennement, de l'entrée à la sortie de l'hôpital. Nous avons d'abord réalisé un modèle de classification pour prédire le statut de l'infection, en utilisant l'acquisition disponible la plus proche de l’admission à l'hôpital.Ce modèle permet de prédire le statut de l'infection avec une précision de 93%. Ensuite, nous avons utilisé toutes les données disponibles pour une analyse longitudinale de l'évolution des COVs en fonction de la durée de l'hospitalisation, en utilisant un modèle à effets mixtes. Après sélection de variables, quatre biomarqueurs de l'infection par le COVID-19 ont pu être identifiés. Ces résultats soulignent la valeur des données PTR-TOF-MS et du logiciel ptairMS pour la découverte de biomarqueurs dans l'air expiré. The analysis of Volatile Organic Compounds (VOCs) in exhaled breath is a promising non-invasive approach in medicine for early diagnosis, phenotyping, disease and treatment monitoring and large-scale screening. Proton Transfer Reaction Time-Of-Flight Mass Spectrometry (PTR-TOF-MS) is of major interest for the real time analysis of VOCs and the discovery of new biomarkers in the clinics. However, there is currently a lack of methods and software tools for the processing of PTR-TOF-MS data from cohorts.We therefore developed a suite of algorithms that process raw data from the patient acquisitions, and build the table of feature intensities, through expiration and peak detection, quantification, alignment between samples, and missing value imputation. Notably, we developed an innovative 2D peak deconvolution model based on penalized splines signal regression, and a method to specifically select the VOCs from exhaled breath. The full workflow is implemented in the freely available ptairMS R/Bioconductor package. Our approach was validated both on experimental data (mixture of VOCs at standardized concentrations) and simulations, which showed that the sensitivity for the identification of VOCs from exhaled breath reached 99 %. A graphical interface was also developed to facilitate data analysis and result interpretation by experimenters (e.g., clinicians).We applied our methodology to the characterization of exhaled breath from mechanically ventilated adults with COVID-19 infection. Analysis of exhaled breath from 28 patients with an acute respiratory distress syndrome (ARDS) and COVID-19 infection, and 12 patients with non-COVID-19 ARDS were performed daily from the hospital admission to the discharge. First, classification models were built to predict the status of the infection, using the closest available acquisition to the entry into hospital, and achieved high prediction accuracies (93 %). Then, all the available data acquired during the hospital stay were used for the longitudinal analysis of the VOCs evolution as a function of the hospitalization time by mixed-effects modeling. Following feature ranking and selection, four biomarkers of COVID-19 infection were identified. Altogether, these results highlight the value of the PTR-TOF-MS data and the ptairMS software for biomarker discovery in exhaled breath.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Hyper Article en Ligne
    Other literature type . 2022
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Hyper Article en Ligne
      Other literature type . 2022
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Mayer, Tobias;

    In the latest years, the healthcare domain has seen an increasing interest in the definition of intelligent systems to support clinicians in their everyday tasks and activities. Among others, this includes novel systems for the field of Evidence-based Medicine. The latter relies on the principle of critically appraising medical evidence and combining high quality evidence with the individual clinical experience of the practitioner with respect to the circumstances of a patient to achieve the best possible outcome. Hence, most of the proposed intelligent systems aim either at extracting information concerning the quality of evidence from clinical trials, clinical guidelines, or electronic health records, or assist in the decision making processes, based on reasoning frameworks. The work in this thesis goes beyond the state-of-the-art of currently proposed information extraction systems. It employs Argument Mining methods to extract and classify argumentative components (i.e., evidence and claims of a clinical trial) and their relations (i.e., support, attack). An Argument Mining pipeline is proposed and further enhanced to integrate additional information inspired by prevalent biomedical frameworks for the analysis of clinical trials. These extensions comprise the detection of PICO elements and an outcome analysis module to identify and classify the effects (i.e., improved, increased, decreased, no difference, no occurrence) of an intervention on the outcome of the trial. In this context, a dataset, composed of 660 Randomized Controlled Trial abstracts from the MEDLINE database, was annotated, leading to a labeled dataset with 4198 argument components, 2601 argument relations, and 3351 outcomes on five different diseases (i.e., neoplasm, glaucoma, hepatitis, diabetes, hypertension). Various Machine Learning approaches ranging from feature-based SVMs to recent neural architectures have been experimented with, where deep bidirectional transformers obtain a macro F1-score of .87 for argument component detection and .68 for argument relation prediction, outperforming current state-of-the-art Argument Mining systems. Additionally, a Proof-of-Concept system, called ACTA, was developed to demonstrate the practical use of the developed argument-based approach to analyse clinical trials. This demo system was further integrated in the context of the Covid-on-the-Web project to create rich and actionable Linked Data about the Covid-19.; Ces dernières années, le domaine de la e-santé a vu un intérêt croissant pour la définition de systèmes intelligents ayant le but d’accompagner les cliniciens dans leurs tâches et leurs activités quotidiennes. D’ailleurs, cela inclut de nouveaux systèmes pour le domaine de la médecine basée sur les preuves. Ce dernier repose sur le principe de l’évaluation critique des preuves médicales et de la combinaison de ces preuves de haute qualité avec l’expérience clinique individuelle du praticien par rapport à la situation d’un patient pour obtenir le meilleur résultat possible. La plupart des systèmes intelligents proposés visent soit à extraire des informations sur la qualité des preuves issues des essais cliniques, de directives cliniques ou des dossiers de santé électroniques, soit à aider dans les processus de prise de décision, sur la base de cadres de raisonnement. Le travail de cette thèse va au-delà de l’état de l’art des systèmes d’extraction d’informations actuellement proposés dans ce contexte. Il utilise des méthodes d’analyse d’arguments pour extraire et classifier les composants d’argumentation (c’est-à-dire les preuves et les conclusions d’un essai clinique) et leurs relations (c’est-à-dire le support et l’attaque). Un cadre de fouille d’arguments (Argument Mining) est proposé et amélioré pour intégrer des informations supplémentaires inspirées par les cadres biomédicaux courants pour l’analyse des essais cliniques. Ces extensions comprennent la détection des éléments PICO et un module d’analyse des résultats pour identifier et classer les effets (c’est- à-dire améliorés, augmentés, diminués, pas de différence, pas d’occurrence) d’une intervention sur le résultat de l’essai. Dans ce contexte, un jeu de données, composé de 660 résumés d’essais cliniques dans la base de données MEDLINE, a été annoté, en résultant dans le construction d’un jeu de données étiquetées qui inclut 4198 composants d’argumentation, 2601 relations d’argumentation et 3351 résultats d’intervention sur cinq maladies différentes (néoplasme, glaucome, hépatite, dia- bète, hypertension). Diverses approches d’apprentissage automatique et profond allant des SVM aux architectures récentes basées sur les réseaux de neurones ont été expérimentées, obtenant un F1 macro de 0,87 pour la détection de composants d’argumentation et de 0,68 pour la prédiction des relation d’argumentation, surpassant les résultats obtenus pas les systèmes de detection d’arguments dans l’état de l’art. De plus, une demo d’un système, appelé ACTA, a été développée pour démontrer l’utilisation pratique de l’approche basée sur les arguments développée pour analyser les essais cliniques. Ce système de démonstration a été intégré dans le contexte du projet Covid-on-the-Web pour créer des données liées riches et exploitables sur le Covid-19.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oskar Bordeauxarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Oskar Bordeaux
    Doctoral thesis
    Data sources: Oskar Bordeaux
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
Powered by OpenAIRE graph