Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Rural Digital Europe. Are you interested to view more results? Visit OpenAIRE - Explore.

  • Rural Digital Europe
  • Publications
  • Research data
  • Other research products
  • European Commission
  • EC|H2020
  • EC|H2020|RIA
  • INRIA a CCSD electronic archive ser...
  • Hyper Article en Ligne - Sciences d...

Date (most recent)
arrow_drop_down
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Mäkipää, Raisa; Abramoff, Rose; Adamczyk, Bartosz; Baldy, Virginie; +26 Authors

    The global forest carbon (C) stock is estimated at 662 Gt of which 45% is in soil organic matter. Thus, comprehensive understanding of the effects of forest management practices on forest soil C stock and greenhouse gas (GHG) fluxes is needed for the development of effective forest-based climate change mitigation strategies. To improve this understanding, we synthesized peer-reviewed literature on forest management practices that can mitigate climate change by increasing soil C stocks and reducing GHG emissions. We further identified soil processes that affect soil GHG balance and discussed how models represent forest management effects on soil in GHG inventories and scenario analyses to address forest climate change mitigation potential. Forest management effects depend strongly on the specific practice and land type. Intensive timber harvesting with removal of harvest residues/stumps results in a reduction in soil C stock, while high stocking density and enhanced productivity by fertilization or dominance of coniferous species increase soil C stock. Nitrogen fertilization increases the soil C stock and N2O emissions while decreasing the CH4 sink. Peatland hydrology management is a major driver of the GHG emissions of the peatland forests, with lower water level corresponding to higher CO2 emissions. Furthermore, the global warming potential of all GHG emissions (CO2, CH4 and N2O) together can be ten-fold higher after clear-cutting than in peatlands with standing trees. The climate change mitigation potential of forest soils, as estimated by modelling approaches, accounts for stand biomass driven effects and climate factors that affect the decomposition rate. A future challenge is to account for the effects of soil preparation and other management that affects soil processes by changing soil temperature, soil moisture, soil nutrient balance, microbial community structure and processes, hydrology and soil oxygen concentration in the models. We recommend that soil monitoring and modelling focus on linking processes of soil C stabilization with the functioning of soil microbiota. This review has been supported by the grant Holistic management practices, modelling and monitoring for European forest soils – HoliSoils (EU Horizon 2020 Grant Agreement No 101000289) and the Academy of Finland Fellow project (330136, B. Adamczyk). In addition to the HoliSoils consortium partners, Dr. Abramoff contributed on this study and her work was supported by the United States Department of Energy, Office of Science, Office of Biological and Environmental Research. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the United States Department of Energy under contract DE-AC05-00OR22725.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ NARCIS; Research@WURarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    NARCIS; Research@WUR
    Article . 2023
    License: CC BY
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Forest Ecology and Management
    Other literature type . 2023
    Data sources: NARCIS
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Repositori Obert UdL
    Article . 2023
    License: CC BY
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Forest Ecology and Management; Research@WUR; ZENODO
    Other literature type . Article . 2022 . 2023 . Peer-reviewed
    License: Elsevier TDM
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Forest Ecology and Management
    Article . 2022
    Data sources: JAIRO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    hybrid
    14
    citations14
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    visibility86
    visibilityviews86
    downloaddownloads87
    Powered by Usage counts
    more_vert
  • Authors: Hemmer, Adrien;

    This thesis concerns new detection methods for the security of heterogenous IoT systems, and fits within the framework of the SecureIoT European project. We have first proposed a solution exploiting the process mining together with pre-treatment techniques, in order to build behavioral models, and identifying anomalies from heterogenous systems. We have then evaluated this solution from datasets coming from different application domains : connected cars, industry 4.0, and assistance robots.. This solution enables to build models that are more easily understandable. It provides better detection results than other common methods, but may generate a longer detection time. In order to reduce this time without degrading detection performances, we have then extended our method with an ensemble approach, which combines the results from several detection methods that are used simultaneously. In particular, we have compared different score aggregation strategies, as well as evaluated a feedback mechanism for dynamically adjusting the sensitivity of the detection. Finally, we have implemented the solution as a prototype, that has been integrated into a security platform developed in collaboration with other European industrial partners.; Cette thèse porte sur de nouvelles méthodes de détection pour la sécurité des systèmes IoT hétérogènes, et s'inscrit dans le cadre du projet européen Secure IoT. Nous avons tout d'abord proposé une solution utilisant le process mining couplé à un pré-traitement des données, pour construire des modèles de comportement et identifier des anomalies à partir de données hétérogènes. Nous avons évalué cette solution à partir de jeux de données issus de plusieurs domaines d'applications différents : véhicules connectés, industrie 4.0, robots d'assistance. Cette solution permet de construire des modèles plus facilement compréhensibles. Elle obtient des meilleurs résultats de détection que d'autres méthodes usuelles, mais demande un temps de traitement plus long. Pour réduire ce dernier sans dégrader les performances de détection, nous avons ensuite étendu notre méthode à l'aide d'une approche ensembliste, qui permet de combiner les résultats de plusieurs méthodes de détection utilisées simultanément. En particulier, nous avons comparé différentes stratégies d'agrégation des scores. Nous avons aussi évalué un mécanisme permettant d'ajuster dynamiquement la sensibilité de la détection. Enfin, nous avons implanté la solution sous la forme d'un prototype, qui a été intégré à une plateforme de sécurité développée avec des partenaires européens.

    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Mélanie Munch; Patrice Buche; Stéphane Dervaux; Juliette Dibie; +4 Authors

    International audience; This paper presents a workflow for the design of transformation processes using different kinds of expert’s knowledge. It introduces POND (Process and observation ONtology Discovery), a workflow dedicated to answer expert’s questions about processes. It addresses two main issues: (1) how to represent the processes inner complexity, and (2) how to reason about processes taking into account uncertainty and causality. First, we show how to use a semantic model, an ontology, and its associated data to answer some of the expert’s questions concerning the processes, using semantic web languages and technologies. Then, we describe how to learn a predictive model, to discover new knowledge and provide explicative models by integrating the semantic model into a probabilistic relational model. The result is a complete workflow able to extensively analyze transformation processes through all their granularity levels and answer expert’s questions about their domains. An example of this workflow is given on biocomposites manufacturing for food packaging.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Expert Systems with ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Expert Systems with Applications
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Ferry, Nicolas; Dautov, Rustem; Song, Hui;

    International audience; One of the most prominent implementations of the serverless programming model is Function-as-a-Service (FaaS). Using FaaS, application developers provide source code of serverless functions, typically describing only parts of a larger application, and define triggers for executing these functions on infrastructure components managed by the FaaS provider. There are still challenges that hinder the wider adoption of the FaaS model across the whole Cloud-Edge-IoT continuum. These include the high heterogeneity of the Edge and IoT infrastructure, vendor lock-in, the need to deploy and adapt serverless functions as well as their supporting services and software stacks into their cyber-physical execution environment. As a first step towards addressing these challenges, we introduce the \siot platform for the design, deployment, and maintenance of applications over the Cloud-Edge-IoT continuum. In particular, our platform enables the specification and deployment of serverless functions on Cloud and Edge resources, as well as the deployment of their supporting services and software stacks over the whole Cloud-Edge-IoT continuum.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ SINTEF Open; Norwegi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Gauthier, Raphaël; Largouët, Christine; Dourmad, Jean-Yves;

    International audience; Predicting litter performance in lactating sows is an essential step towards the development of decision support systems for precision feeding in lactating sows. Numerous factors affecting litter performance have been described in literature. However, predictive models working on-farm in real time are not available. The main objectives of this research was to (i) explore 4 different machine learning strategies, and (ii) identify the best supervised learning algorithm in order to obtain reliable predictions of litter performance. This study was carried out with data obtained from 6 experimental farms over the last 20 years. Algorithms were trained to predict the litter weight at weaning using a set of 4 numeric and 3 categorical features, and a method for predicting secondary litter performance and nutrient output in milk from the predicted litter weight at weaning was evaluated. To evaluate the reliability of predictions within each farm, the mean error per farm (MEf) and the mean absolute percentage error per farm (MAPEf) were computed. The best performance for the prediction of litter weight at weaning was obtained with an ensemble algorithm with farm-level training and testing (MEf = −0.14 kg; MAPEf = 9.01%), but performance with simple linear regression was very close (MAPEf = 9.30%). Learning across all farms only achieved comparable results with the neural networks algorithm, but at higher computational costs. The method for predicting secondary litter performance and nutrient output from the predictions of litter weight at weaning reveals that the MEf remains close to 0, and that the MAPEf only increases by a few percentage points. This study confirms the effect of numerous factors known in the literature to affect litter performance, such as litter size and parity of sows, but also revealed huge variations between farms. According to this study, reliable predictions could be obtained with interpretable supervised algorithms trained at farm level, with features that can be easily measured on-farm. This study thus shows that on-farm data are necessary to accurately train models and make reliable predictions at farm level. These predictions could be used by decision support systems in order to develop precision feeding approaches in lactating sows.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Computers and Electr...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Computers and Electronics in Agriculture
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    5
    citations5
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Munch, Mélanie; Buche, Patrice; Dervaux, Stéphane; Breysse, Amélie; +6 Authors

    International audience; Due to the rising amount of plastic waste generated each year, multiple questions are emerging about their harmful long-term effects on the environment, the ecosystems and human health. One possible strategy to mitigate these issues is to substitute conventional plastics by materials fully biodegradable in natural conditions, such as poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). In order to decrease the overall cost and environmental impact of PHBV-based materials while modulating their technical performance, PHBV can be combined with lignocellulosic fillers. In this article, a total of 88 formulations of PHBV-based biocomposites has been collected, distributed over 5 interdisciplinary projects involving computer scientists, data scientists and biomass processing experts for food and bio-based material production. Available data concern the technical process descriptions, including the description of each step and the different observations measured. These data are stored in a knowledge base that can be queried on the Web.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Agritroparrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Data in Brief
    Article . 2022
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://doi.org/10.1016/j.dib....
    Article
    License: Elsevier TDM
    Data sources: Sygma
    HAL Descartes
    Article . 2022
    License: CC BY
    Data sources: HAL Descartes
    DOAJ
    Article . 2022
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Agritroparrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Data in Brief
      Article . 2022
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://doi.org/10.1016/j.dib....
      Article
      License: Elsevier TDM
      Data sources: Sygma
      HAL Descartes
      Article . 2022
      License: CC BY
      Data sources: HAL Descartes
      DOAJ
      Article . 2022
      Data sources: DOAJ
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Pierre Levasseur; Katrin Erdlenbruch; Christelle Gramaglia; Sofia Bento; +2 Authors

    International audience; This paper looks at three contaminated communities in southern Europe facing pollution from industrial and mining activity and analyses forms of avoidance behaviour, using both economic and sociological approaches. Based on a quantitative household survey, we show that avoidance behaviour is mainly explained by residential location and socio-economic characteristics. Pollution perception is not statistically correlated to most avoidance behaviour. From in-depth qualitative interviews, we learn more about people’s risk perception and whether and why people adopt avoidance behaviour, including discovering some inventive solutions. To conclude, our results cast doubt on the efficacy of current public advisory communications.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Tanusan Rajmohan; Phu H. Nguyen; Nicolas Ferry;

    International audience; Abstract Security of the Internet of Things (IoT)-based Smart Systems involving sensors, actuators and distributed control loop is of paramount importance but very difficult to address. Security patterns consist of domain-independent time-proven security knowledge and expertise. How are they useful for developing secure IoT-based smart systems? Are there architectures that support IoT security? We aim to systematically review the research work published on patterns and architectures for IoT security (and privacy). Then, we want to provide an analysis on that research landscape to answer our research questions. We follow the well-known guidelines for conducting systematic literature reviews. From thousands of candidate papers initially found in our search process, we have systematically distinguished and analyzed thirty-six (36) papers that have been peer-reviewed and published around patterns and architectures for IoT security and privacy in the last decade (January 2010–December 2020). Our analysis shows that there is a rise in the number of publications tending to patterns and architectures for IoT security in the last three years. We have not seen any approach of applying systematically architectures and patterns together that can address security (and privacy) concerns not only at the architectural level, but also at the network or IoT devices level. We also explored how the research contributions in the primary studies handle the different issues from the OWASP Internet of Things (IoT) top ten vulnerabilities list. Finally, we discuss the current gaps in this research area and how to fill in the gaps for promoting the utilization of patterns for IoT security and privacy by design.Security of the Internet of Things (IoT)-based Smart Systems involving sensors, actuators and distributed control loop is of paramount importance but very difficult to address. Security patterns consist of domain-independent time-proven security knowledge and expertise. How are they useful for developing secure IoT-based smart systems? Are there architectures that support IoT security? We aim to systematically review the research work published on patterns and architectures for IoT security (and privacy). Then, we want to provide an analysis on that research landscape to answer our research questions. We follow the well-known guidelines for conducting systematic literature reviews. From thousands of candidate papers initially found in our search process, we have systematically distinguished and analyzed thirty-six (36) papers that have been peer-reviewed and published around patterns and architectures for IoT security and privacy in the last decade (January 2010–December 2020). Our analysis shows that there is a rise in the number of publications tending to patterns and architectures for IoT security in the last three years. We have not seen any approach of applying systematically architectures and patterns together that can address security (and privacy) concerns not only at the architectural level, but also at the network or IoT devices level. We also explored how the research contributions in the primary studies handle the different issues from the OWASP Internet of Things (IoT) top ten vulnerabilities list. Finally, we discuss the current gaps in this research area and how to fill in the gaps for promoting the utilization of patterns for IoT security and privacy by design.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cybersecurityarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Cybersecurity
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Sygma; Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    SINTEF Open
    Article . 2022
    Data sources: SINTEF Open
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Cybersecurity
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2022
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2022
    License: CC BY
    Data sources: Datacite
    Hal-Diderot
    Article . 2022
    Data sources: Hal-Diderot
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    9
    citations9
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    visibility7
    visibilityviews7
    downloaddownloads9
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cybersecurityarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Cybersecurity
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Sygma; Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      SINTEF Open
      Article . 2022
      Data sources: SINTEF Open
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Cybersecurity
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2022
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2022
      License: CC BY
      Data sources: Datacite
      Hal-Diderot
      Article . 2022
      Data sources: Hal-Diderot
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Fabíola Polita; Livia Madureira;

    International audience; The objective of this article is to apply the Multi Level Perspective (MLP) to a transition case of agricultural sustainability that occurs from the development of an agroecological innovation. To the temporal and multilevel perspective given by MLP, we conjugate the concept of Agricultural Knowledge and Innovation Systems (AKIS), with the intention of reconciling a territorial dimension to the analysis. The empirical setting is the Douro wine region in Portugal, in which an innovation denominated Ecological Infrastructure (EI) has been disseminated. Methodologically, we conducted structured personal interviews with farmers or farm managers, representatives of commercial grape and wine farms. We found that there is a transition principle led by corporate farmers who trade in the global market. This transition principle is grounded in the mobilization of a territorial AKIS that allowed the development of the cognitive and technical framework that structured the sector for its articulation to market demands. However, this AKIS is not equally mobilized by the different farmers, which manifests itself in different innovation adoption responses. The case makes it clear how sociotechnical landscape pressures, represented by the market, can create different responses in the local regime.; O objetivo deste artigo é aplicar a Multi Level Perspective (MLP) a um caso de transição para a sustentabilidade da agricultura que ocorre a partir do desenvolvimento de uma inovação agroecológica. À perspectiva temporal e multinível dada pela MLP, conjugamos o conceito de Agricultural Knowledge and Innovation Systems (AKIS), com a intenção de conciliar uma dimensão territorial para a análise. O cenário empírico é a região vitivinícola do Douro, em Portugal, na qual se disseminou uma inovação denominada Infraestrutura Ecológica (IE). Metodologicamente, fizemos entrevistas pessoais estruturadas, realizadas com agricultores ou gestores agrícolas, representantes de explorações comerciais de uva e vinho. Constatamos que há um princípio de transição liderado por agricultores corporativos que comercializam no mercado global. Este princípio de transição está alicerçado na mobilização de um AKIS territorial que permitiu o desenvolvimento do arcabouço cognitivo e técnico que estruturou o setor para sua articulação às demandas de mercado. Entretanto, este AKIS não é igualmente mobilizado pelos diferentes agricultores, o que se manifesta em distintas respostas de adoção da inovação. O caso explicita como as pressões de paisagem sociotécnica, representada pelo mercado, podem criar diferentes respostas no regime local.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODO; Revista de E...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Revista de Economia e Sociologia Rural
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    DOAJ
    Article . 2021
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility24
    visibilityviews24
    downloaddownloads17
    Powered by Usage counts
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Kilis, Emils; Adamsone-Fiskovica, Anda; Šūmane, Sandra; Tisenkopfs, Talis;

    International audience; Purpose: To advance the discussion of retro-innovation and highlight the implications this has for the provision of agricultural advice and the role of advisors.Design/Methodology/Approach: 70 interviews with farmers and 10 interviews with experts on biological pest control and direct marketing in Latvia were conducted.Findings: Biological pest control and direct marketing in Latvia are practices that challenge existing conceptions of retro-innovation as they exhibit incremental development, while still combining old and new knowledge in a way that transforms farming practices. They also underline the importance of continuous learning and exchange within the farming community, which supplement the knowledge and advice provided by formal advisory organisations, indicating that the practices are highly dependent upon locally embedded sources of knowledge and a balance between formal instruction and informal peer-to-peer learning. This allows them to retain their dynamism and evolve, although more targeted advisory assistance would help to address issues that prevent biological pest control and direct marketing from being more widely adopted.Practical implications: This paper highlights the importance of locally embedded forms of learning and advice provision. A better understanding of these can provide a more solid basis for interventions that aim to encourage widespread adoption of sustainability-oriented practices.Theoretical implications: This paper improves understanding of retro-innovation processes by drawing attention to the disparate motivations driving innovation and the role of continuity in retroinnovation.Originality: This paper advances the discussion on retroinnovation by looking at examples that expand upon existing approaches to it and highlight specific advisory challenges.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Agric...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2022
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility15
    visibilityviews15
    downloaddownloads22
    Powered by Usage counts
    more_vert
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Rural Digital Europe. Are you interested to view more results? Visit OpenAIRE - Explore.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Mäkipää, Raisa; Abramoff, Rose; Adamczyk, Bartosz; Baldy, Virginie; +26 Authors

    The global forest carbon (C) stock is estimated at 662 Gt of which 45% is in soil organic matter. Thus, comprehensive understanding of the effects of forest management practices on forest soil C stock and greenhouse gas (GHG) fluxes is needed for the development of effective forest-based climate change mitigation strategies. To improve this understanding, we synthesized peer-reviewed literature on forest management practices that can mitigate climate change by increasing soil C stocks and reducing GHG emissions. We further identified soil processes that affect soil GHG balance and discussed how models represent forest management effects on soil in GHG inventories and scenario analyses to address forest climate change mitigation potential. Forest management effects depend strongly on the specific practice and land type. Intensive timber harvesting with removal of harvest residues/stumps results in a reduction in soil C stock, while high stocking density and enhanced productivity by fertilization or dominance of coniferous species increase soil C stock. Nitrogen fertilization increases the soil C stock and N2O emissions while decreasing the CH4 sink. Peatland hydrology management is a major driver of the GHG emissions of the peatland forests, with lower water level corresponding to higher CO2 emissions. Furthermore, the global warming potential of all GHG emissions (CO2, CH4 and N2O) together can be ten-fold higher after clear-cutting than in peatlands with standing trees. The climate change mitigation potential of forest soils, as estimated by modelling approaches, accounts for stand biomass driven effects and climate factors that affect the decomposition rate. A future challenge is to account for the effects of soil preparation and other management that affects soil processes by changing soil temperature, soil moisture, soil nutrient balance, microbial community structure and processes, hydrology and soil oxygen concentration in the models. We recommend that soil monitoring and modelling focus on linking processes of soil C stabilization with the functioning of soil microbiota. This review has been supported by the grant Holistic management practices, modelling and monitoring for European forest soils – HoliSoils (EU Horizon 2020 Grant Agreement No 101000289) and the Academy of Finland Fellow project (330136, B. Adamczyk). In addition to the HoliSoils consortium partners, Dr. Abramoff contributed on this study and her work was supported by the United States Department of Energy, Office of Science, Office of Biological and Environmental Research. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the United States Department of Energy under contract DE-AC05-00OR22725.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ NARCIS; Research@WURarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    NARCIS; Research@WUR
    Article . 2023
    License: CC BY
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Forest Ecology and Management
    Other literature type . 2023
    Data sources: NARCIS
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Repositori Obert UdL
    Article . 2023
    License: CC BY
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Forest Ecology and Management; Research@WUR; ZENODO
    Other literature type . Article . 2022 . 2023 . Peer-reviewed
    License: Elsevier TDM
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Forest Ecology and Management
    Article . 2022
    Data sources: JAIRO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    hybrid
    14
    citations14
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    visibility86
    visibilityviews86
    downloaddownloads87
    Powered by Usage counts
    more_vert
  • Authors: Hemmer, Adrien;

    This thesis concerns new detection methods for the security of heterogenous IoT systems, and fits within the framework of the SecureIoT European project. We have first proposed a solution exploiting the process mining together with pre-treatment techniques, in order to build behavioral models, and identifying anomalies from heterogenous systems. We have then evaluated this solution from datasets coming from different application domains : connected cars, industry 4.0, and assistance robots.. This solution enables to build models that are more easily understandable. It provides better detection results than other common methods, but may generate a longer detection time. In order to reduce this time without degrading detection performances, we have then extended our method with an ensemble approach, which combines the results from several detection methods that are used simultaneously. In particular, we have compared different score aggregation strategies, as well as evaluated a feedback mechanism for dynamically adjusting the sensitivity of the detection. Finally, we have implemented the solution as a prototype, that has been integrated into a security platform developed in collaboration with other European industrial partners.; Cette thèse porte sur de nouvelles méthodes de détection pour la sécurité des systèmes IoT hétérogènes, et s'inscrit dans le cadre du projet européen Secure IoT. Nous avons tout d'abord proposé une solution utilisant le process mining couplé à un pré-traitement des données, pour construire des modèles de comportement et identifier des anomalies à partir de données hétérogènes. Nous avons évalué cette solution à partir de jeux de données issus de plusieurs domaines d'applications différents : véhicules connectés, industrie 4.0, robots d'assistance. Cette solution permet de construire des modèles plus facilement compréhensibles. Elle obtient des meilleurs résultats de détection que d'autres méthodes usuelles, mais demande un temps de traitement plus long. Pour réduire ce dernier sans dégrader les performances de détection, nous avons ensuite étendu notre méthode à l'aide d'une approche ensembliste, qui permet de combiner les résultats de plusieurs méthodes de détection utilisées simultanément. En particulier, nous avons comparé différentes stratégies d'agrégation des scores. Nous avons aussi évalué un mécanisme permettant d'ajuster dynamiquement la sensibilité de la détection. Enfin, nous avons implanté la solution sous la forme d'un prototype, qui a été intégré à une plateforme de sécurité développée avec des partenaires européens.

    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Mélanie Munch; Patrice Buche; Stéphane Dervaux; Juliette Dibie; +4 Authors

    International audience; This paper presents a workflow for the design of transformation processes using different kinds of expert’s knowledge. It introduces POND (Process and observation ONtology Discovery), a workflow dedicated to answer expert’s questions about processes. It addresses two main issues: (1) how to represent the processes inner complexity, and (2) how to reason about processes taking into account uncertainty and causality. First, we show how to use a semantic model, an ontology, and its associated data to answer some of the expert’s questions concerning the processes, using semantic web languages and technologies. Then, we describe how to learn a predictive model, to discover new knowledge and provide explicative models by integrating the semantic model into a probabilistic relational model. The result is a complete workflow able to extensively analyze transformation processes through all their granularity levels and answer expert’s questions about their domains. An example of this workflow is given on biocomposites manufacturing for food packaging.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Expert Systems with ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Expert Systems with Applications
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Ferry, Nicolas; Dautov, Rustem; Song, Hui;

    International audience; One of the most prominent implementations of the serverless programming model is Function-as-a-Service (FaaS). Using FaaS, application developers provide source code of serverless functions, typically describing only parts of a larger application, and define triggers for executing these functions on infrastructure components managed by the FaaS provider. There are still challenges that hinder the wider adoption of the FaaS model across the whole Cloud-Edge-IoT continuum. These include the high heterogeneity of the Edge and IoT infrastructure, vendor lock-in, the need to deploy and adapt serverless functions as well as their supporting services and software stacks into their cyber-physical execution environment. As a first step towards addressing these challenges, we introduce the \siot platform for the design, deployment, and maintenance of applications over the Cloud-Edge-IoT continuum. In particular, our platform enables the specification and deployment of serverless functions on Cloud and Edge resources, as well as the deployment of their supporting services and software stacks over the whole Cloud-Edge-IoT continuum.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ SINTEF Open; Norwegi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Gauthier, Raphaël; Largouët, Christine; Dourmad, Jean-Yves;

    International audience; Predicting litter performance in lactating sows is an essential step towards the development of decision support systems for precision feeding in lactating sows. Numerous factors affecting litter performance have been described in literature. However, predictive models working on-farm in real time are not available. The main objectives of this research was to (i) explore 4 different machine learning strategies, and (ii) identify the best supervised learning algorithm in order to obtain reliable predictions of litter performance. This study was carried out with data obtained from 6 experimental farms over the last 20 years. Algorithms were trained to predict the litter weight at weaning using a set of 4 numeric and 3 categorical features, and a method for predicting secondary litter performance and nutrient output in milk from the predicted litter weight at weaning was evaluated. To evaluate the reliability of predictions within each farm, the mean error per farm (MEf) and the mean absolute percentage error per farm (MAPEf) were computed. The best performance for the prediction of litter weight at weaning was obtained with an ensemble algorithm with farm-level training and testing (MEf = −0.14 kg; MAPEf = 9.01%), but performance with simple linear regression was very close (MAPEf = 9.30%). Learning across all farms only achieved comparable results with the neural networks algorithm, but at higher computational costs. The method for predicting secondary litter performance and nutrient output from the predictions of litter weight at weaning reveals that the MEf remains close to 0, and that the MAPEf only increases by a few percentage points. This study confirms the effect of numerous factors known in the literature to affect litter performance, such as litter size and parity of sows, but also revealed huge variations between farms. According to this study, reliable predictions could be obtained with interpretable supervised algorithms trained at farm level, with features that can be easily measured on-farm. This study thus shows that on-farm data are necessary to accurately train models and make reliable predictions at farm level. These predictions could be used by decision support systems in order to develop precision feeding approaches in lactating sows.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Computers and Electr...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Computers and Electronics in Agriculture
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    5
    citations5
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Munch, Mélanie; Buche, Patrice; Dervaux, Stéphane; Breysse, Amélie; +6 Authors

    International audience; Due to the rising amount of plastic waste generated each year, multiple questions are emerging about their harmful long-term effects on the environment, the ecosystems and human health. One possible strategy to mitigate these issues is to substitute conventional plastics by materials fully biodegradable in natural conditions, such as poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). In order to decrease the overall cost and environmental impact of PHBV-based materials while modulating their technical performance, PHBV can be combined with lignocellulosic fillers. In this article, a total of 88 formulations of PHBV-based biocomposites has been collected, distributed over 5 interdisciplinary projects involving computer scientists, data scientists and biomass processing experts for food and bio-based material production. Available data concern the technical process descriptions, including the description of each step and the different observations measured. These data are stored in a knowledge base that can be queried on the Web.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Agritroparrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Data in Brief
    Article . 2022
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://doi.org/10.1016/j.dib....
    Article
    License: Elsevier TDM
    Data sources: Sygma
    HAL Descartes
    Article . 2022
    License: CC BY
    Data sources: HAL Descartes
    DOAJ
    Article . 2022
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Agritroparrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Data in Brief
      Article . 2022
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://doi.org/10.1016/j.dib....
      Article
      License: Elsevier TDM
      Data sources: Sygma
      HAL Descartes
      Article . 2022
      License: CC BY
      Data sources: HAL Descartes
      DOAJ
      Article . 2022
      Data sources: DOAJ
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Pierre Levasseur; Katrin Erdlenbruch; Christelle Gramaglia; Sofia Bento; +2 Authors

    International audience; This paper looks at three contaminated communities in southern Europe facing pollution from industrial and mining activity and analyses forms of avoidance behaviour, using both economic and sociological approaches. Based on a quantitative household survey, we show that avoidance behaviour is mainly explained by residential location and socio-economic characteristics. Pollution perception is not statistically correlated to most avoidance behaviour. From in-depth qualitative interviews, we learn more about people’s risk perception and whether and why people adopt avoidance behaviour, including discovering some inventive solutions. To conclude, our results cast doubt on the efficacy of current public advisory communications.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Tanusan Rajmohan; Phu H. Nguyen; Nicolas Ferry;

    International audience; Abstract Security of the Internet of Things (IoT)-based Smart Systems involving sensors, actuators and distributed control loop is of paramount importance but very difficult to address. Security patterns consist of domain-independent time-proven security knowledge and expertise. How are they useful for developing secure IoT-based smart systems? Are there architectures that support IoT security? We aim to systematically review the research work published on patterns and architectures for IoT security (and privacy). Then, we want to provide an analysis on that research landscape to answer our research questions. We follow the well-known guidelines for conducting systematic literature reviews. From thousands of candidate papers initially found in our search process, we have systematically distinguished and analyzed thirty-six (36) papers that have been peer-reviewed and published around patterns and architectures for IoT security and privacy in the last decade (January 2010–December 2020). Our analysis shows that there is a rise in the number of publications tending to patterns and architectures for IoT security in the last three years. We have not seen any approach of applying systematically architectures and patterns together that can address security (and privacy) concerns not only at the architectural level, but also at the network or IoT devices level. We also explored how the research contributions in the primary studies handle the different issues from the OWASP Internet of Things (IoT) top ten vulnerabilities list. Finally, we discuss the current gaps in this research area and how to fill in the gaps for promoting the utilization of patterns for IoT security and privacy by design.Security of the Internet of Things (IoT)-based Smart Systems involving sensors, actuators and distributed control loop is of paramount importance but very difficult to address. Security patterns consist of domain-independent time-proven security knowledge and expertise. How are they useful for developing secure IoT-based smart systems? Are there architectures that support IoT security? We aim to systematically review the research work published on patterns and architectures for IoT security (and privacy). Then, we want to provide an analysis on that research landscape to answer our research questions. We follow the well-known guidelines for conducting systematic literature reviews. From thousands of candidate papers initially found in our search process, we have systematically distinguished and analyzed thirty-six (36) papers that have been peer-reviewed and published around patterns and architectures for IoT security and privacy in the last decade (January 2010–December 2020). Our analysis shows that there is a rise in the number of publications tending to patterns and architectures for IoT security in the last three years. We have not seen any approach of applying systematically architectures and patterns together that can address security (and privacy) concerns not only at the architectural level, but also at the network or IoT devices level. We also explored how the research contributions in the primary studies handle the different issues from the OWASP Internet of Things (IoT) top ten vulnerabilities list. Finally, we discuss the current gaps in this research area and how to fill in the gaps for promoting the utilization of patterns for IoT security and privacy by design.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cybersecurityarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Cybersecurity
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Sygma; Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    SINTEF Open
    Article . 2022
    Data sources: SINTEF Open
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Cybersecurity
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2022
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2022
    License: CC BY
    Data sources: Datacite
    Hal-Diderot
    Article . 2022
    Data sources: Hal-Diderot
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    9
    citations9
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    visibility7
    visibilityviews7
    downloaddownloads9
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cybersecurityarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Cybersecurity
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Sygma; Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      SINTEF Open
      Article . 2022
      Data sources: SINTEF Open
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Cybersecurity
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2022
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2022
      License: CC BY
      Data sources: Datacite
      Hal-Diderot
      Article . 2022
      Data sources: Hal-Diderot
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Fabíola Polita; Livia Madureira;

    International audience; The objective of this article is to apply the Multi Level Perspective (MLP) to a transition case of agricultural sustainability that occurs from the development of an agroecological innovation. To the temporal and multilevel perspective given by MLP, we conjugate the concept of Agricultural Knowledge and Innovation Systems (AKIS), with the intention of reconciling a territorial dimension to the analysis. The empirical setting is the Douro wine region in Portugal, in which an innovation denominated Ecological Infrastructure (EI) has been disseminated. Methodologically, we conducted structured personal interviews with farmers or farm managers, representatives of commercial grape and wine farms. We found that there is a transition principle led by corporate farmers who trade in the global market. This transition principle is grounded in the mobilization of a territorial AKIS that allowed the development of the cognitive and technical framework that structured the sector for its articulation to market demands. However, this AKIS is not equally mobilized by the different farmers, which manifests itself in different innovation adoption responses. The case makes it clear how sociotechnical landscape pressures, represented by the market, can create different responses in the local regime.; O objetivo deste artigo é aplicar a Multi Level Perspective (MLP) a um caso de transição para a sustentabilidade da agricultura que ocorre a partir do desenvolvimento de uma inovação agroecológica. À perspectiva temporal e multinível dada pela MLP, conjugamos o conceito de Agricultural Knowledge and Innovation Systems (AKIS), com a intenção de conciliar uma dimensão territorial para a análise. O cenário empírico é a região vitivinícola do Douro, em Portugal, na qual se disseminou uma inovação denominada Infraestrutura Ecológica (IE). Metodologicamente, fizemos entrevistas pessoais estruturadas, realizadas com agricultores ou gestores agrícolas, representantes de explorações comerciais de uva e vinho. Constatamos que há um princípio de transição liderado por agricultores corporativos que comercializam no mercado global. Este princípio de transição está alicerçado na mobilização de um AKIS territorial que permitiu o desenvolvimento do arcabouço cognitivo e técnico que estruturou o setor para sua articulação às demandas de mercado. Entretanto, este AKIS não é igualmente mobilizado pelos diferentes agricultores, o que se manifesta em distintas respostas de adoção da inovação. O caso explicita como as pressões de paisagem sociotécnica, representada pelo mercado, podem criar diferentes respostas no regime local.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODO; Revista de E...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Revista de Economia e Sociologia Rural
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    DOAJ
    Article . 2021
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility24
    visibilityviews24
    downloaddownloads17
    Powered by Usage counts
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Kilis, Emils; Adamsone-Fiskovica, Anda; Šūmane, Sandra; Tisenkopfs, Talis;

    International audience; Purpose: To advance the discussion of retro-innovation and highlight the implications this has for the provision of agricultural advice and the role of advisors.Design/Methodology/Approach: 70 interviews with farmers and 10 interviews with experts on biological pest control and direct marketing in Latvia were conducted.Findings: Biological pest control and direct marketing in Latvia are practices that challenge existing conceptions of retro-innovation as they exhibit incremental development, while still combining old and new knowledge in a way that transforms farming practices. They also underline the importance of continuous learning and exchange within the farming community, which supplement the knowledge and advice provided by formal advisory organisations, indicating that the practices are highly dependent upon locally embedded sources of knowledge and a balance between formal instruction and informal peer-to-peer learning. This allows them to retain their dynamism and evolve, although more targeted advisory assistance would help to address issues that prevent biological pest control and direct marketing from being more widely adopted.Practical implications: This paper highlights the importance of locally embedded forms of learning and advice provision. A better understanding of these can provide a more solid basis for interventions that aim to encourage widespread adoption of sustainability-oriented practices.Theoretical implications: This paper improves understanding of retro-innovation processes by drawing attention to the disparate motivations driving innovation and the role of continuity in retroinnovation.Originality: This paper advances the discussion on retroinnovation by looking at examples that expand upon existing approaches to it and highlight specific advisory challenges.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Agric...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2022
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility15
    visibilityviews15
    downloaddownloads22
    Powered by Usage counts
    more_vert