Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to NEANIAS Atmospheric Research Community. Are you interested to view more results? Visit OpenAIRE - Explore.

  • NEANIAS Atmospheric Research Community
  • Publications
  • Research data
  • Science Foundation Ireland
  • Mémoires en Sciences de l'Informati...

Date (most recent)
arrow_drop_down
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Smith, Ryan; Dias, Frédéric; Facciolo, Gabriele; Murphy, Thomas Brendan;

    International audience; The use of convolutional neural networks (CNNs) in image classification has become the standard method of approaching many computer vision problems. Here we apply pre-trained networks to classify images of non-breaking, plunging and spilling breaking waves. The CNNs are used as basic feature extractors and a classifier is then trained on top of these networks. The dynamic nature of breaking waves is exploited by using image sequences extracted from videos to gain extra information and improve the classification results. We also see improved classification performance by using pre-computed image features such as the Optical Flow (OF) between image pairs to create new models in combination with infra-red images with reduction in errors of up to 60%. The inclusion of this dynamic information improves the classification between breaking wave classes. We also provide corrections to a methodology in the literature from which the data originates to achieve a more accurate assessment of model performance.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Journal of ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    DOAJ
    Article . 2023
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Journal of ...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      DOAJ
      Article . 2023
      Data sources: DOAJ
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: O'Reilly, Luke; Fentimen, Robin; Butschek, Felix; Titschack, Jürgen; +7 Authors

    Within the Porcupine Bank Canyon (NE Atlantic), cold-water coral (CWC) mounds are mostly found clustered along the canyon lip, with individual disconnected mounds occurring nearby on the western Porcupine Bank. Remotely operated vehicle-mounted vibrocoring was utilized to acquire cores from both of these sites. This study is the first to employ this novel method when aiming to precisely sample two closely situated areas. Radiometric ages constrain the records from the early to mid-Holocene (9.1 to 5.6 ka BP). The cores were then subjected to 3D segmented computer tomography to capture mound formation stages. The cores were then further examined using stable isotopes and benthic foraminiferal assemblages, to constrain the paleoenvironmental variation that influenced CWC mound formation of each site. In total, mound aggradation rate in the Porcupine Bank Canyon and western Porcupine Bank was comparable to other Holocene CWC mounds situated off western Ireland. Results derived from multiproxy analysis, show that regional climatic shifts define the environmental conditions that allow positive coral mound formation. In addition, the aggradation rate of coral mounds is higher adjacent to the Porcupine Bank Canyon than on the western Porcupine Bank. Benthic foraminifera assemblages and planktic foraminiferal δ13C reveal that higher quality organic matter is more readily available closer to the canyon lip. As such, we hypothesize that coral mound formation in the region is likely controlled by an interplay between enhanced shelf currents and the existence of the Eastern North Atlantic Water-Mediterranean Outflow Water-Transition Zone. The geomorphology of the canyon promotes upwelling of these water masses that are enriched in particles, including food and sediment supply. The higher availability of these particles support the development and succession of ecological hotspots along the canyon lip and adjacent areas of the seafloor. These observations provide a glimpse into the role that submarine canyons play in influencing macro and micro benthic fauna distributions and highlights the importance of their conservation.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Serveur académique l...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Serveur académique lausannois
    Article . 2022
    License: CC BY
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Marine Geology; ZENODO
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    hybrid
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility8
    visibilityviews8
    downloaddownloads16
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Serveur académique l...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Serveur académique lausannois
      Article . 2022
      License: CC BY
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Marine Geology; ZENODO
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Luke O'Reilly; Aaron Lim; Jürgen Titschack; Niamh Moore; +7 Authors

    Extensive research has been undertaken to elucidate the glacial history of the British Irish Ice Sheet (BIIS) in the NE Atlantic. BRITICE-CHRONO has compiled terrestrial and marine based evidence, to provide an empirical reconstruction of ice sheet expansion and retreat during the Late Pleistocene. Across the Irish margin, particular focus has been given to seafloor sediments which contain ice-rafted debris (IRD). However, there are few publications on IRD from areas proximal to the maximum extent of the BIIS, which would offer further insights on the behaviour of the ice sheet during (de)glacial events. Previous exploratory surveys of the west Porcupine Bank (wPB) visually identified IRD on the seafloor and these present a new study site to investigate the extent of the BIIS and the course of its icebergs. Moreover, there are uncertainties about the effects of icebergs on the marine life and cold-water corals occupying the nearby Porcupine Bank Canyon. Assessing a sediment core containing an IRD analogue for the wPB would thus, have a dual purpose. In the past however, coring missions of the wPB using traditional coring methods (i.e. piston and gravity cores) were unsuccessful. Here, we utilized a novel ROV-mounted vibrocoring procedure to capture a 0.75 m IRD-bearing sediment core from the wPB. Then further novel analytical methods (computed tomography-based IRD-detection) were used to quantify IRD every 0.02 cm to provide the highest resolution record of BIIS related IRD to date. From this, several fluxes of IRD deposition onto the wPB between 31.6 and 9 ka BP were revealed and corroborated by other published records from across the NE Atlantic. It was shown that the wPB IRD fluxes occur simultaneously with other parts of the margin. The IRD signal also shows that iceberg calving occurred on the wPB during the Younger Dryas. Grain-size analysis of the core allowed for a reconstruction and interpretation of the palaeoenvironmental conditions during these IRD flux events and shows that BIIS-derived glaciers had a major impact on hydrodynamic conditions in the wPB. Subsequently, intensive scouring led to a major hiatus in the core during 27.3â 17.2 ka BP. These results are a useful addition to BIIS literature on this part of the shelf. Furthermore, it shows that bottom currents were influenced by (de)glacial events, an important finding when considering the presence of nearby current-dependant benthos.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Serveur académique l...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Serveur académique lausannois
    Article . 2022
    License: CC BY
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Quaternary Science Reviews
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    hybrid
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Serveur académique l...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Serveur académique lausannois
      Article . 2022
      License: CC BY
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Quaternary Science Reviews
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: J. E. Waters; C. M. Jackman; L. Lamy; Baptiste Cecconi; +4 Authors

    AbstractAuroral Kilometric Radiation (AKR) is terrestrial radio emission that originates in particle acceleration regions along magnetic field lines, coinciding with discrete auroral arcs. AKR viewing geometry is complex due to the confinement of the source regions to nightside local times (LTs) and the anisotropy of the beaming pattern, so observations are highly dependent on spacecraft viewing position. We present a novel, empirical technique that selects AKR emission from observations made with the spin‐axis aligned antenna of the Wind/WAVES instrument, based on the rapidly varying amplitude of AKR across spacecraft spin timescales. We apply the technique to Wind/WAVES data during 1999 day of year 227–257, when the Cassini spacecraft flew past Earth and provided an opportunity to observe AKR from two remote locations. We examine the AKR flux and power, with observations made from LTs of 1700–0300 hr having an average power up to 104 Wsr‐1 larger than those on the dayside and an increasing AKR power observed at higher magnetic latitudes. We perform a linear cross‐correlation between the Wind AKR power and the spacecraft magnetic latitude, showing positive then negative correlation as Wind travels from the Northern to Southern magnetic hemisphere. Statistically significant diurnal modulations are found in the whole 30‐day period and in subsets of the data covering different local time sectors, indicative of a predominantly geometrical effect for remote AKR viewing. The reproduction of well‐known features of the AKR verifies the empirical selection and shows the promise of its application to Wind/WAVES observations.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ e-Prints Sotonarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Geophysical Research Space Physics
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    5
    citations5
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility4
    visibilityviews4
    downloaddownloads2
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ e-Prints Sotonarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Geophysical Research Space Physics
      Article . 2021 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Mark Wildman; Kerry Gallagher; David Chew; Andrew Carter;

    AbstractProducts of onshore passive continental margin erosion are best preserved in offshore sedimentary basins. Therefore, these basins potentially hold a recoverable record of the onshore erosion history. Here, we present apatite fission track (AFT) data for 13 samples from a borehole in the southern Walvis basin, offshore Namibia. All samples show AFT central ages older or similar to their respective stratigraphic ages, while many single grain ages are older, implying none of the samples has been totally annealed post‐deposition. Furthermore, large dispersion in single grain ages in some samples suggests multiple age components related to separate source regions. Using Bayesian mixture modelling we classify single grain ages from a given sample to particular age components to create ‘subsamples’ and then jointly invert the entire dataset to obtain a thermal history. For each sample, the post‐depositional thermal history is required to be the same for all age components, but each component (‘subsample’) has an independent pre‐depositional thermal history. With this approach we can resolve pre‐ and post‐depositional thermal events and identify changes in sediment provenance in response to the syn‐ and post‐rift tectonic evolution of Namibia and southern Africa. Apatite U‐Pb and compositional data obtained during the acquisition of LA‐ICP‐MS FT data are also presented to help track changes in provenance with time. We constrain multiple thermal events linked to the exhumation and burial history of the continental and offshore sectors of the margin over a longer timescale than has been possible using only onshore AFT thermochronological data.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CORE (RIOXX-UK Aggre...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Basin Research
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    5
    citations5
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    download8
    downloaddownloads8
    Powered by Usage counts
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: P. Arroucau; Susana Custódio; Chiara Civiero; Graça Silveira; +4 Authors

    We present PRISM3D, a 3-D reference seismic model of P- and S-wave velocities for Iberia and adjacent areas. PRISM3D results from the combination of the most up-to-date earth models available for the region. It extends horizontally from 15°W to 5°E in longitude, 34°N to 46°N in latitude and vertically from 3.5 km above to 200 km below sea level, and is modelled on a regular grid with 10 and 0.5 km of grid node spacing in the horizontal and vertical directions, respectively. It was designed using models inferred from local and teleseismic body-wave tomography, earthquake and ambient noise surface wave tomography, receiver function analysis and active source experiments. It includes two interfaces, namely the topography/bathymetry and the Mohorovičić (Moho) discontinuity. The Moho was modelled from previously published receiver function analysis and deep seismic sounding results. To that end we used a probabilistic surface reconstruction algorithm that allowed to extract the mean of the Moho depth surface along with its associated standard deviation, which provides a depth uncertainty estimate. The Moho depth model is in good agreement with previously published models, although it presents slightly sharper gardients in orogenic areas such as the Pyrenees or the Betic-Rif system. Crustal and mantle P- and S-wave wave speed grids were built separately on each side of the Moho depth surface by weighted average of existing models, thus allowing to realistically render the speed gradients across that interface. The associated weighted standard deviation was also calculated, which provides an uncertainty estimation on the average wave speed values at any point of the grid. At shallow depths (<10 km), low P and S wave speeds and high VP/VS are observed in offshore basins, while the Iberian Massif, which covers a large part of western Iberia, appears characterized by a rather flat Moho, higher than average VP and VS and low VP/VS. Conversely, the Betic-Rif system seems to be associated with low VP and VS, combined with high VP/VS in comparison to the rest of the study area. The most prominent feature of the mantle is the well known high wave speed anomaly related to the Alboran slab imaged in various mantle tomography studies. The consistency of PRISM3D with previous work is verified by comparing it with two recent studies, with which it shows a good general agreement.The impact of the new 3-D model is illustrated through a simple synthetic experiment, which shows that the lateral variations of the wave speed can produce traveltime differences ranging from –1.5 and 1.5 s for P waves and from –2.5 and 2.5 s for S waves at local to regional distances. Such values are far larger than phase picking uncertainties and would likely affect earthquake hypocentral parameter estimations. The new 3-D model thus provides a basis for regional studies including earthquake source studies, Earth structure investigations and geodynamic modelling of Iberia and its surroundings. This publication is supported by the FCT project SPIDER - Seismogenic processes in slowly deforming regions (PTDC/GEO-FIQ/2590/2014). The work presented is a contribution to FCT UIDB/50019/2020 IDL. P. Arroucau acknowledges support from Science Foundation Ireland (grant 13/CDA/2192) and from the Geological Survey of Ireland (grant 2016-PD-06). C. Civiero was supported by the Science Foundation Ireland, the Geological Survey of Ireland, and the Marine Institute (grants 13/CDA/2192 and 16/IA/4598). Figures were plotted using the GMT - Generic Mapping Tools software (Wessel & Smith 1998) and Python Matplotlib and Basemap packages. NonLinLoc was used for the forward computation of arrival times (Lomax et al. 2000). We also wish to thank Catarina Matos for the tests she performed on an early version of the model. With the funding support of the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S), of the Spanish Research Agency (AEI). 22 pages, 17 figures, 2 tables, supporting information https://doi.org/10.1093/gji/ggab005 Peer reviewed

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    hybrid
    5
    citations5
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility107
    visibilityviews107
    downloaddownloads127
    Powered by Usage counts
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Daniil Popov; Richard Alan Spikings; Stéphane Scaillet; Gary O'Sullivan; +5 Authors

    International audience; Alkali feldspar 40Ar/39Ar and apatite UPb geochronological studies have typically invoked two mechanisms to account for apparent loss of radiogenic 40Ar and 206-208Pb. Some studies have suggested that the radiogenic isotopes were lost by volume diffusion and used these dates to constrain temporal variations of rock temperatures; others have argued that the radiogenic isotopes were lost due to interaction with fluids and related these dates to chemical alteration. These two end-member interpretations have fundamentally different implications for tectonic models derived from geochronological data, and therefore it is important to reliably identify the principal mechanism for loss of radiogenic isotopes. Here, we revisit the mechanisms of 40Ar loss in the famous gem-quality alkali feldspar from the Itrongay pegmatite in Madagascar. Previous studies have suggested that volume diffusion is the dominant mechanism of 40Ar loss, providing key evidence to support the use of 40Ar/39Ar dating of alkali feldspar for thermochronology. We attempted to verify these results by obtaining time-temperature paths from petrologically characterised cogenetic feldspar and apatite from the Itrongay pegmatite and comparing them with each other. However, our results suggest that only a minor component in the variability of 40Ar/39Ar dates of Itrongay feldspar is related to the diffusive loss of 40Ar, and that this loss was not compatible with the majority of previously proposed models, which hinders quantitative interpretations. The crystal studied here grew in five episodes related to the influx initially of co-existing dense SiO2-rich solution and CO2-dominated fluid (the first and supposedly the following two episodes) and subsequently of H2O-rich fluid (supposedly the final two episodes). Much greater component in the variability of the acquired 40Ar/39Ar dates is interpreted to reflect the differences in the ages of these growth episodes, which we estimate to span from 477 Ma to 176 Ma (the first four episodes). Apatite inclusions in this crystal are interpreted to be xenocrysts derived from the country rocks of the Itrongay pegmatite. These yield older UPb dates than the estimated age of their host feldspar and have apparently experienced diffusive loss of 206,207Pb prior to entrapment. Our 40Ar/39Ar results indicate that there is a lack of unambiguous evidence for diffusive loss of 40Ar from alkali feldspar that can be readily interpreted for thermochronological purposes. However, in situ 40Ar/39Ar dating of alkali feldspar appears to be a promising tool for tracking fluid-flow events in the Earth's crust whose applicability is not restricted to sedimentary rocks. Our UPb results corroborate previous suggestions that UPb dating of apatite can be used for thermochronology.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archive ouverte UNIG...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Chemical Geology
    Article . 2020 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    8
    citations8
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Didier Clamond; David Henry;

    International audience; The aim of this note is to examine the efficacy of a recently developed approach to the recovery of nonlinear water waves from pressure measurements at the seabed, by applying it to the celebrated extreme Stokes wave.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cork Open Research A...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Cork Open Research Archive (CORA)
    Article . 2020
    License: CC BY NC ND
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Fluid Mechanics
    Article . 2020 . Peer-reviewed
    License: Cambridge Core User Agreement
    Data sources: Crossref
    https://doi.org/10.48550/arxiv...
    Article . 2020
    License: arXiv Non-Exclusive Distribution
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    14
    citations14
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cork Open Research A...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Cork Open Research Archive (CORA)
      Article . 2020
      License: CC BY NC ND
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Fluid Mechanics
      Article . 2020 . Peer-reviewed
      License: Cambridge Core User Agreement
      Data sources: Crossref
      https://doi.org/10.48550/arxiv...
      Article . 2020
      License: arXiv Non-Exclusive Distribution
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Alex R. Baker; Maria Kanakidou; Athanasios Nenes; Stelios Myriokefalitakis; +12 Authors

    Anthropogenic emissions to the atmosphere have increased the flux of nutrients, especially nitrogen, to the ocean, but they have also altered the acidity of aerosol, cloud water, and precipitation over much of the marine atmosphere. For nitrogen, acidity-driven changes in chemical speciation result in altered partitioning between the gas and particulate phases that subsequently affect long-range transport. Other important nutrients, notably iron and phosphorus, are affected, because their soluble fractions increase upon exposure to acidic environments during atmospheric transport. These changes affect the magnitude, distribution, and deposition mode of individual nutrients supplied to the ocean, the extent to which nutrient deposition interacts with the sea surface microlayer during its passage into bulk seawater, and the relative abundances of soluble nutrients in atmospheric deposition. Atmospheric acidity change therefore affects ecosystem composition, in addition to overall marine productivity, and these effects will continue to evolve with changing anthropogenic emissions in the future. Changing atmospheric acidity alters the delivery of nutrients to the ocean and affects marine productivity and ecology.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODO; Science Adva...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Science Advances
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    NARCIS
    Article . 2021
    Data sources: NARCIS
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://doi.org/10.5194/egusph...
    Other literature type . 2020
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    40
    citations40
    popularityTop 1%
    influenceAverage
    impulseTop 1%
    BIP!Powered by BIP!
    visibility1
    visibilityviews1
    downloaddownloads12
    Powered by Usage counts
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Andrea Licciardi; Richard England; N. Piana Agostinetti; Kerry Gallagher;

    SUMMARYWe present a new Moho depth model of the British Isles and surrounding areas from the most up-to-date compilation of Moho depth estimates obtained from refraction, reflection and receiver function data. We use a probabilistic, trans-dimensional and hierarchical approach for the surface reconstruction of Moho topography. This fully data-driven approach allows for adaptive parametrization, assessment of relative importance between different data-types and uncertainties quantification on the reconstructed surface. Our results confirm the first order features of the Moho topography obtained in previous work such as deeper Moho (29–36 km) in continental areas (e.g. Ireland and Great Britain) and shallower Moho (12–22 km) offshore (e.g. in the Atlantic Ocean, west of Ireland). Resolution is improved by including recent available data, especially around the Porcupine Basin, onshore Ireland and Great Britain. NE trending features in Moho topography are highlighted above the Rockall High (about 28 km) and the Rockall Trough (with a NE directed deepening from 12 to about 20 km). A perpendicular SE oriented feature (Moho depth 26–28 km) is located between the Orkney and the Shetland, extending further SW in the North Sea. Onshore, our results highlight the crustal thinning towards the N in Ireland and an E–W oriented transition between deep (34 km) and shallow (about 28 km) Moho in Scotland. Our probabilistic results are compared with previous models showing overall differences around ±2 km, within the posterior uncertainties calculated with our approach. Bigger differences are located where different data are used between models or in less constrained areas where posterior uncertainties are high.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ BOA - Bicocca Open A...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    6
    citations6
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to NEANIAS Atmospheric Research Community. Are you interested to view more results? Visit OpenAIRE - Explore.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Smith, Ryan; Dias, Frédéric; Facciolo, Gabriele; Murphy, Thomas Brendan;

    International audience; The use of convolutional neural networks (CNNs) in image classification has become the standard method of approaching many computer vision problems. Here we apply pre-trained networks to classify images of non-breaking, plunging and spilling breaking waves. The CNNs are used as basic feature extractors and a classifier is then trained on top of these networks. The dynamic nature of breaking waves is exploited by using image sequences extracted from videos to gain extra information and improve the classification results. We also see improved classification performance by using pre-computed image features such as the Optical Flow (OF) between image pairs to create new models in combination with infra-red images with reduction in errors of up to 60%. The inclusion of this dynamic information improves the classification between breaking wave classes. We also provide corrections to a methodology in the literature from which the data originates to achieve a more accurate assessment of model performance.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Journal of ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    DOAJ
    Article . 2023
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Journal of ...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      DOAJ
      Article . 2023
      Data sources: DOAJ
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: O'Reilly, Luke; Fentimen, Robin; Butschek, Felix; Titschack, Jürgen; +7 Authors

    Within the Porcupine Bank Canyon (NE Atlantic), cold-water coral (CWC) mounds are mostly found clustered along the canyon lip, with individual disconnected mounds occurring nearby on the western Porcupine Bank. Remotely operated vehicle-mounted vibrocoring was utilized to acquire cores from both of these sites. This study is the first to employ this novel method when aiming to precisely sample two closely situated areas. Radiometric ages constrain the records from the early to mid-Holocene (9.1 to 5.6 ka BP). The cores were then subjected to 3D segmented computer tomography to capture mound formation stages. The cores were then further examined using stable isotopes and benthic foraminiferal assemblages, to constrain the paleoenvironmental variation that influenced CWC mound formation of each site. In total, mound aggradation rate in the Porcupine Bank Canyon and western Porcupine Bank was comparable to other Holocene CWC mounds situated off western Ireland. Results derived from multiproxy analysis, show that regional climatic shifts define the environmental conditions that allow positive coral mound formation. In addition, the aggradation rate of coral mounds is higher adjacent to the Porcupine Bank Canyon than on the western Porcupine Bank. Benthic foraminifera assemblages and planktic foraminiferal δ13C reveal that higher quality organic matter is more readily available closer to the canyon lip. As such, we hypothesize that coral mound formation in the region is likely controlled by an interplay between enhanced shelf currents and the existence of the Eastern North Atlantic Water-Mediterranean Outflow Water-Transition Zone. The geomorphology of the canyon promotes upwelling of these water masses that are enriched in particles, including food and sediment supply. The higher availability of these particles support the development and succession of ecological hotspots along the canyon lip and adjacent areas of the seafloor. These observations provide a glimpse into the role that submarine canyons play in influencing macro and micro benthic fauna distributions and highlights the importance of their conservation.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Serveur académique l...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Serveur académique lausannois
    Article . 2022
    License: CC BY
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Marine Geology; ZENODO
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    hybrid
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility8
    visibilityviews8
    downloaddownloads16
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Serveur académique l...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Serveur académique lausannois
      Article . 2022
      License: CC BY
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Marine Geology; ZENODO
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Luke O'Reilly; Aaron Lim; Jürgen Titschack; Niamh Moore; +7 Authors

    Extensive research has been undertaken to elucidate the glacial history of the British Irish Ice Sheet (BIIS) in the NE Atlantic. BRITICE-CHRONO has compiled terrestrial and marine based evidence, to provide an empirical reconstruction of ice sheet expansion and retreat during the Late Pleistocene. Across the Irish margin, particular focus has been given to seafloor sediments which contain ice-rafted debris (IRD). However, there are few publications on IRD from areas proximal to the maximum extent of the BIIS, which would offer further insights on the behaviour of the ice sheet during (de)glacial events. Previous exploratory surveys of the west Porcupine Bank (wPB) visually identified IRD on the seafloor and these present a new study site to investigate the extent of the BIIS and the course of its icebergs. Moreover, there are uncertainties about the effects of icebergs on the marine life and cold-water corals occupying the nearby Porcupine Bank Canyon. Assessing a sediment core containing an IRD analogue for the wPB would thus, have a dual purpose. In the past however, coring missions of the wPB using traditional coring methods (i.e. piston and gravity cores) were unsuccessful. Here, we utilized a novel ROV-mounted vibrocoring procedure to capture a 0.75 m IRD-bearing sediment core from the wPB. Then further novel analytical methods (computed tomography-based IRD-detection) were used to quantify IRD every 0.02 cm to provide the highest resolution record of BIIS related IRD to date. From this, several fluxes of IRD deposition onto the wPB between 31.6 and 9 ka BP were revealed and corroborated by other published records from across the NE Atlantic. It was shown that the wPB IRD fluxes occur simultaneously with other parts of the margin. The IRD signal also shows that iceberg calving occurred on the wPB during the Younger Dryas. Grain-size analysis of the core allowed for a reconstruction and interpretation of the palaeoenvironmental conditions during these IRD flux events and shows that BIIS-derived glaciers had a major impact on hydrodynamic conditions in the wPB. Subsequently, intensive scouring led to a major hiatus in the core during 27.3â 17.2 ka BP. These results are a useful addition to BIIS literature on this part of the shelf. Furthermore, it shows that bottom currents were influenced by (de)glacial events, an important finding when considering the presence of nearby current-dependant benthos.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Serveur académique l...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Serveur académique lausannois
    Article . 2022
    License: CC BY
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Quaternary Science Reviews
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    hybrid
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Serveur académique l...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Serveur académique lausannois
      Article . 2022
      License: CC BY
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Quaternary Science Reviews
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: J. E. Waters; C. M. Jackman; L. Lamy; Baptiste Cecconi; +4 Authors

    AbstractAuroral Kilometric Radiation (AKR) is terrestrial radio emission that originates in particle acceleration regions along magnetic field lines, coinciding with discrete auroral arcs. AKR viewing geometry is complex due to the confinement of the source regions to nightside local times (LTs) and the anisotropy of the beaming pattern, so observations are highly dependent on spacecraft viewing position. We present a novel, empirical technique that selects AKR emission from observations made with the spin‐axis aligned antenna of the Wind/WAVES instrument, based on the rapidly varying amplitude of AKR across spacecraft spin timescales. We apply the technique to Wind/WAVES data during 1999 day of year 227–257, when the Cassini spacecraft flew past Earth and provided an opportunity to observe AKR from two remote locations. We examine the AKR flux and power, with observations made from LTs of 1700–0300 hr having an average power up to 104 Wsr‐1 larger than those on the dayside and an increasing AKR power observed at higher magnetic latitudes. We perform a linear cross‐correlation between the Wind AKR power and the spacecraft magnetic latitude, showing positive then negative correlation as Wind travels from the Northern to Southern magnetic hemisphere. Statistically significant diurnal modulations are found in the whole 30‐day period and in subsets of the data covering different local time sectors, indicative of a predominantly geometrical effect for remote AKR viewing. The reproduction of well‐known features of the AKR verifies the empirical selection and shows the promise of its application to Wind/WAVES observations.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ e-Prints Sotonarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Geophysical Research Space Physics
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    5
    citations5
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility4
    visibilityviews4
    downloaddownloads2
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ e-Prints Sotonarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Geophysical Research Space Physics
      Article . 2021 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Mark Wildman; Kerry Gallagher; David Chew; Andrew Carter;

    AbstractProducts of onshore passive continental margin erosion are best preserved in offshore sedimentary basins. Therefore, these basins potentially hold a recoverable record of the onshore erosion history. Here, we present apatite fission track (AFT) data for 13 samples from a borehole in the southern Walvis basin, offshore Namibia. All samples show AFT central ages older or similar to their respective stratigraphic ages, while many single grain ages are older, implying none of the samples has been totally annealed post‐deposition. Furthermore, large dispersion in single grain ages in some samples suggests multiple age components related to separate source regions. Using Bayesian mixture modelling we classify single grain ages from a given sample to particular age components to create ‘subsamples’ and then jointly invert the entire dataset to obtain a thermal history. For each sample, the post‐depositional thermal history is required to be the same for all age components, but each component (‘subsample’) has an independent pre‐depositional thermal history. With this approach we can resolve pre‐ and post‐depositional thermal events and identify changes in sediment provenance in response to the syn‐ and post‐rift tectonic evolution of Namibia and southern Africa. Apatite U‐Pb and compositional data obtained during the acquisition of LA‐ICP‐MS FT data are also presented to help track changes in provenance with time. We constrain multiple thermal events linked to the exhumation and burial history of the continental and offshore sectors of the margin over a longer timescale than has been possible using only onshore AFT thermochronological data.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CORE (RIOXX-UK Aggre...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Basin Research
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    5
    citations5
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    download8
    downloaddownloads8
    Powered by Usage counts
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: P. Arroucau; Susana Custódio; Chiara Civiero; Graça Silveira; +4 Authors

    We present PRISM3D, a 3-D reference seismic model of P- and S-wave velocities for Iberia and adjacent areas. PRISM3D results from the combination of the most up-to-date earth models available for the region. It extends horizontally from 15°W to 5°E in longitude, 34°N to 46°N in latitude and vertically from 3.5 km above to 200 km below sea level, and is modelled on a regular grid with 10 and 0.5 km of grid node spacing in the horizontal and vertical directions, respectively. It was designed using models inferred from local and teleseismic body-wave tomography, earthquake and ambient noise surface wave tomography, receiver function analysis and active source experiments. It includes two interfaces, namely the topography/bathymetry and the Mohorovičić (Moho) discontinuity. The Moho was modelled from previously published receiver function analysis and deep seismic sounding results. To that end we used a probabilistic surface reconstruction algorithm that allowed to extract the mean of the Moho depth surface along with its associated standard deviation, which provides a depth uncertainty estimate. The Moho depth model is in good agreement with previously published models, although it presents slightly sharper gardients in orogenic areas such as the Pyrenees or the Betic-Rif system. Crustal and mantle P- and S-wave wave speed grids were built separately on each side of the Moho depth surface by weighted average of existing models, thus allowing to realistically render the speed gradients across that interface. The associated weighted standard deviation was also calculated, which provides an uncertainty estimation on the average wave speed values at any point of the grid. At shallow depths (<10 km), low P and S wave speeds and high VP/VS are observed in offshore basins, while the Iberian Massif, which covers a large part of western Iberia, appears characterized by a rather flat Moho, higher than average VP and VS and low VP/VS. Conversely, the Betic-Rif system seems to be associated with low VP and VS, combined with high VP/VS in comparison to the rest of the study area. The most prominent feature of the mantle is the well known high wave speed anomaly related to the Alboran slab imaged in various mantle tomography studies. The consistency of PRISM3D with previous work is verified by comparing it with two recent studies, with which it shows a good general agreement.The impact of the new 3-D model is illustrated through a simple synthetic experiment, which shows that the lateral variations of the wave speed can produce traveltime differences ranging from –1.5 and 1.5 s for P waves and from –2.5 and 2.5 s for S waves at local to regional distances. Such values are far larger than phase picking uncertainties and would likely affect earthquake hypocentral parameter estimations. The new 3-D model thus provides a basis for regional studies including earthquake source studies, Earth structure investigations and geodynamic modelling of Iberia and its surroundings. This publication is supported by the FCT project SPIDER - Seismogenic processes in slowly deforming regions (PTDC/GEO-FIQ/2590/2014). The work presented is a contribution to FCT UIDB/50019/2020 IDL. P. Arroucau acknowledges support from Science Foundation Ireland (grant 13/CDA/2192) and from the Geological Survey of Ireland (grant 2016-PD-06). C. Civiero was supported by the Science Foundation Ireland, the Geological Survey of Ireland, and the Marine Institute (grants 13/CDA/2192 and 16/IA/4598). Figures were plotted using the GMT - Generic Mapping Tools software (Wessel & Smith 1998) and Python Matplotlib and Basemap packages. NonLinLoc was used for the forward computation of arrival times (Lomax et al. 2000). We also wish to thank Catarina Matos for the tests she performed on an early version of the model. With the funding support of the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S), of the Spanish Research Agency (AEI). 22 pages, 17 figures, 2 tables, supporting information https://doi.org/10.1093/gji/ggab005 Peer reviewed

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    hybrid
    5
    citations5
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility107
    visibilityviews107
    downloaddownloads127
    Powered by Usage counts
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Daniil Popov; Richard Alan Spikings; Stéphane Scaillet; Gary O'Sullivan; +5 Authors

    International audience; Alkali feldspar 40Ar/39Ar and apatite UPb geochronological studies have typically invoked two mechanisms to account for apparent loss of radiogenic 40Ar and 206-208Pb. Some studies have suggested that the radiogenic isotopes were lost by volume diffusion and used these dates to constrain temporal variations of rock temperatures; others have argued that the radiogenic isotopes were lost due to interaction with fluids and related these dates to chemical alteration. These two end-member interpretations have fundamentally different implications for tectonic models derived from geochronological data, and therefore it is important to reliably identify the principal mechanism for loss of radiogenic isotopes. Here, we revisit the mechanisms of 40Ar loss in the famous gem-quality alkali feldspar from the Itrongay pegmatite in Madagascar. Previous studies have suggested that volume diffusion is the dominant mechanism of 40Ar loss, providing key evidence to support the use of 40Ar/39Ar dating of alkali feldspar for thermochronology. We attempted to verify these results by obtaining time-temperature paths from petrologically characterised cogenetic feldspar and apatite from the Itrongay pegmatite and comparing them with each other. However, our results suggest that only a minor component in the variability of 40Ar/39Ar dates of Itrongay feldspar is related to the diffusive loss of 40Ar, and that this loss was not compatible with the majority of previously proposed models, which hinders quantitative interpretations. The crystal studied here grew in five episodes related to the influx initially of co-existing dense SiO2-rich solution and CO2-dominated fluid (the first and supposedly the following two episodes) and subsequently of H2O-rich fluid (supposedly the final two episodes). Much greater component in the variability of the acquired 40Ar/39Ar dates is interpreted to reflect the differences in the ages of these growth episodes, which we estimate to span from 477 Ma to 176 Ma (the first four episodes). Apatite inclusions in this crystal are interpreted to be xenocrysts derived from the country rocks of the Itrongay pegmatite. These yield older UPb dates than the estimated age of their host feldspar and have apparently experienced diffusive loss of 206,207Pb prior to entrapment. Our 40Ar/39Ar results indicate that there is a lack of unambiguous evidence for diffusive loss of 40Ar from alkali feldspar that can be readily interpreted for thermochronological purposes. However, in situ 40Ar/39Ar dating of alkali feldspar appears to be a promising tool for tracking fluid-flow events in the Earth's crust whose applicability is not restricted to sedimentary rocks. Our UPb results corroborate previous suggestions that UPb dating of apatite can be used for thermochronology.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archive ouverte UNIG...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Chemical Geology
    Article . 2020 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    8
    citations8
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Didier Clamond; David Henry;

    International audience; The aim of this note is to examine the efficacy of a recently developed approach to the recovery of nonlinear water waves from pressure measurements at the seabed, by applying it to the celebrated extreme Stokes wave.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cork Open Research A...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Cork Open Research Archive (CORA)
    Article . 2020
    License: CC BY NC ND
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Fluid Mechanics
    Article . 2020 . Peer-reviewed
    License: Cambridge Core User Agreement
    Data sources: Crossref
    https://doi.org/10.48550/arxiv...
    Article . 2020
    License: arXiv Non-Exclusive Distribution
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    14
    citations14
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cork Open Research A...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Cork Open Research Archive (CORA)
      Article . 2020
      License: CC BY NC ND
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Fluid Mechanics
      Article . 2020 . Peer-reviewed
      License: Cambridge Core User Agreement
      Data sources: Crossref
      https://doi.org/10.48550/arxiv...
      Article . 2020
      License: arXiv Non-Exclusive Distribution
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Alex R. Baker; Maria Kanakidou; Athanasios Nenes; Stelios Myriokefalitakis; +12 Authors

    Anthropogenic emissions to the atmosphere have increased the flux of nutrients, especially nitrogen, to the ocean, but they have also altered the acidity of aerosol, cloud water, and precipitation over much of the marine atmosphere. For nitrogen, acidity-driven changes in chemical speciation result in altered partitioning between the gas and particulate phases that subsequently affect long-range transport. Other important nutrients, notably iron and phosphorus, are affected, because their soluble fractions increase upon exposure to acidic environments during atmospheric transport. These changes affect the magnitude, distribution, and deposition mode of individual nutrients supplied to the ocean, the extent to which nutrient deposition interacts with the sea surface microlayer during its passage into bulk seawater, and the relative abundances of soluble nutrients in atmospheric deposition. Atmospheric acidity change therefore affects ecosystem composition, in addition to overall marine productivity, and these effects will continue to evolve with changing anthropogenic emissions in the future. Changing atmospheric acidity alters the delivery of nutrients to the ocean and affects marine productivity and ecology.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODO; Science Adva...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Science Advances
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    NARCIS
    Article . 2021
    Data sources: NARCIS
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://doi.org/10.5194/egusph...
    Other literature type . 2020
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    40
    citations40
    popularityTop 1%
    influenceAverage
    impulseTop 1%
    BIP!Powered by BIP!
    visibility1
    visibilityviews1
    downloaddownloads12
    Powered by Usage counts
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Andrea Licciardi; Richard England; N. Piana Agostinetti; Kerry Gallagher;

    SUMMARYWe present a new Moho depth model of the British Isles and surrounding areas from the most up-to-date compilation of Moho depth estimates obtained from refraction, reflection and receiver function data. We use a probabilistic, trans-dimensional and hierarchical approach for the surface reconstruction of Moho topography. This fully data-driven approach allows for adaptive parametrization, assessment of relative importance between different data-types and uncertainties quantification on the reconstructed surface. Our results confirm the first order features of the Moho topography obtained in previous work such as deeper Moho (29–36 km) in continental areas (e.g. Ireland and Great Britain) and shallower Moho (12–22 km) offshore (e.g. in the Atlantic Ocean, west of Ireland). Resolution is improved by including recent available data, especially around the Porcupine Basin, onshore Ireland and Great Britain. NE trending features in Moho topography are highlighted above the Rockall High (about 28 km) and the Rockall Trough (with a NE directed deepening from 12 to about 20 km). A perpendicular SE oriented feature (Moho depth 26–28 km) is located between the Orkney and the Shetland, extending further SW in the North Sea. Onshore, our results highlight the crustal thinning towards the N in Ireland and an E–W oriented transition between deep (34 km) and shallow (about 28 km) Moho in Scotland. Our probabilistic results are compared with previous models showing overall differences around ±2 km, within the posterior uncertainties calculated with our approach. Bigger differences are located where different data are used between models or in less constrained areas where posterior uncertainties are high.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ BOA - Bicocca Open A...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    6
    citations6
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert